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The Stochastic Behavior of Commodity Prices: 
Implications for Valuation and Hedging 

EDUARDO S. SCHWARTZ* 

ABSTRACT 

In this article we compare three models of the stochastic behavior of commodity 
prices that take into account mean reversion, in terms of their ability to price existing 
futures contracts, and their implication with respect to the valuation of other finan- 
cial and real assets. The first model is a simple one-factor model 'in which the 
logarithm of the spot price of the commodity is assumed to follow a mean reverting 
process. The second model takes into account a second stochastic factor, the conve- 
nience yield of the commodity, which is assumed to follow a mean reverting process. 
Finally, the third model also includes stochastic interest rates. The Kalman filter 
methodology is used to estimate the parameters of the three models for two commer- 
cial commodities, copper and oil, and one precious metal, gold. The analysis reveals 
strong mean reversion in the commercial commodity prices. Using the estimated 
parameters, we analyze the implications of the models for the term structure of 
futures prices and volatilities beyond the observed contracts, and for hedging con- 
tracts for future delivery. Finally, we analyze the implications of the models for 
capital budgeting decisions. 

THE STOCHASTIC BEHAVIOR OF commodity prices plays a central role in the models 
for valuing financial contingent claims on the commodity, and in the proce- 
dures for evaluating investments to extract or produce the commodity. Earlier 
studies, by assuming that interest rates and convenience yields are constant 
allowed for a straight forward extension of the procedures developed for 
common stock option pricing to the valuation of financial and real commodity 
contingent claims. The assumption, however, is clearly not very satisfactory 
since it implies that the volatility of future prices is equal to the volatility of 
spot prices, and that the distribution of future spot prices under the equivalent 
martingale measure has a variance that increases without bound as the 
horizon increases. In an equilibrium setting we would expect that when prices 
are relatively high, supply will increase since higher cost producers of the 
commodity will enter the market putting a downward pressure on prices. 
Conversely, when prices are relatively low, supply will decrease since some of 
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the higher cost producers will exit the market, putting upward pressure on 
prices. The impact of relative prices on the supply of the commodity will induce 
mean reversion in commodity prices.' 

In this article we compare three models of the stochastic behavior of com- 
modity prices that take into account mean reversion, in terms of their ability 
to price existing futures contracts and their implication with respect to the 
valuation of other financial and real assets. The first model is a simple 
one-factor model in which the logarithm of the spot price of the commodity is 
assumed to follow a mean reverting process of the Ornstein-Uhlenbeck type. 
The second model we consider is a variation of the two-factor Gibson and 
Schwartz (1990) model. The second factor in this model is the convenience 
yield of the commodity and it is assumed to follow a mean reverting process. 
Finally, we extend the Gibson and Schwartz model to include stochastic 
interest rates. In this three-factor model, the instantaneous interest rate is 
also assumed to follow a mean reverting process as in Vasicek (1977). 

For these three models, closed form solutions for the prices of futures and 
forward contracts2 can be obtained, which greatly simplifies the comparative 
statics and empirical estimation. In addition, for all three models the loga- 
rithm of the futures price is linear in the underlying factors, a property that 
turns out to be very useful in view of the econometric technique used to 
estimate the parameters of the models. 

One of the main difficulties in the empirical implementation of commodity 
price models is that frequently the factors or state variables of these models 
are not directly observable. In many cases the spot price of a commodity is so 
uncertain that the corresponding futures contract closest to maturity is used 
as a proxy for the spot price. The instantaneous convenience yield is even more 
difficult to estimate. Futures contracts, however, are traded on several ex- 
changes and their prices are more easily observed. 

A tool that is especially well suited to deal with situations in which the state 
variables are not observable, but are known to be generated by a Markov 
process, is the state space form. Once a model has been put in state space form, 
the Kalman filter may be applied to estimate the parameters of the model and 
the time series of the unobservable state variables. 

We apply the Kalman filter method to estimate the parameters of the three 
models for two commercial commodities, copper and oil, and for one precious 
metal, gold. The analysis reveals strong mean reversion in the commercial 
commodity prices, but not for the precious metal. Using the estimated param- 
eters we analyze the implications of the models for the term structure of 

1 The mean reverting nature of commodity prices has been considered in a series of recent 
articles. See for example Brennan (1991), Gibson and Schwartz (1990), Cortazar and Schwartz 
(1994), Bessembinder, Coughenour, Seguin, and Smoller (1995), and Ross (1995). 

2 Since the first two models assume that the interest rate is constant, for these models prices of 
futures and forward contracts are the same (see Cox, Ingersoll, and Ross (1981)). 
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futures prices and volatilities beyond the observed contracts, and for hedging 
contracts for future delivery. 

The "real options" approach to investment under uncertainty (for an excel- 
lent recent survey of the literature see Dixit and Pindyck (1994)) emphasizes 
the importance of uncertainty for the value of a project and for determining 
when the project should be undertaken. The valuation of natural resource 
investment projects and the rule for determining when it is optimal to invest 
depend significantly on the stochastic process assumed for the underlying 
commodity price.3 We compare the value and the investment rule for simple 
projects under the different assumptions about the commodity price process 
implied by the models, using realistic estimated parameters. 

The remainder of the article is organized as follows. The valuation models 
are developed in Section I and Section II delineates their empirical counter- 
parts. Section III describes the data, and Section IV reports the empirical 
estimates of the models and a comparison of their relative performance. In 
Section V the implications of the models for the volatility of futures returns are 
discussed. Section VI considers futures contracts with longer maturities than 
the available data, and Section VII the hedging of contracts for future delivery. 
Section VIII looks at the implications of the models for investment under 
uncertainty and compares their predictions with two benchmarks: the dis- 
counted cash flow criterion and a real option model with no mean reversion. 
Section IX concludes. 

I. Valuation Models 

In this section we present three models of commodity prices and derive the 
corresponding formulas for pricing futures contracts in each model. The first 
model, which is a one-factor model, assumes that the logarithm of the spot 
price of the commodity follows a mean reverting process of the Ornstein- 
Uhlenbeck type. The second model includes a second stochastic factor, the 
convenience yield, which is mean reverting and positively correlated with the 
spot price.4 The third model extends the second one by allowing for stochastic 
interest rates. The three models are very tractable, since they allow for closed 
form solutions for futures prices and for a linear relation between the loga- 
rithm of futures prices and the underlying factors. These properties will be 
extensively used in the empirical work that follows. 

3 See for example Ingersoll and Ross (1992). 
4 The positive correlation between changes in the spot price and changes in the convenience 

yield of the commodity is induced by the level of inventories. When inventories of the commodity 
decrease, the spot price should increase since the commodity is scarce and the convenience yield 
should also increase since futures prices will not increase as much as the spot price, and vice versa 
when inventories increase. 
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A. Model 1 

To develop the one-factor model we first assume that the commodity spot 
price follows the stochastic process:5 

dS = K(g - ln S)Sdt + uSdz (1) 

DefiningX = ln S and applying Ito's Lemma, this implies that the log price can 
be characterized by an Ornstein-Uhlenbeck stochastic process: 

dX= K(a -X)dt + adz (2) 

a2 

a =i - 
K 

(3 

The magnitude of the speed of adjustment K> 0 measures the degree of mean 
reversion to the long run mean log price, a. The second term in equation (2) 
characterizes the volatility of the process, with dz being an increment to a 
standard Brownian motion. 

In this model, the commodity is not an asset in the usual sense6 and the spot 
price, or equivalently the log of the spot price, plays the role of an underlying 
state variable upon which contingent claims can be written. Under standard 
assumptions, the dynamics of the Ornstein-Uhlenbeck process under the 
equivalent martingale measure can be written as:7 

dX= K(a* - X)dt + adz* (4) 

where a* = a - A, A is the market price of risk (assumed constant)8 and dz* is 
the increment to the Brownian motion under the equivalent martingale mea- 
sure. 

From equation (4), the conditional distribution of X at time T under the 
equivalent martingale measure is normal with mean and variance: 

Eo[X(T)] = eKTX(O) + (1 - eKT)a* 

Varo[X(T)] - (1 - e 2KT) (5) 
2 K 

Since X = ln S, the spot price of the commodity at time T is log-normally 
distributed under the martingale measure with these same parameters. 

Assuming a constant interest rate, the futures (or forward) price of the 
commodity with maturity T is the expected price of the commodity at time T 

5 This model is similar to the one proposed by Ross (1995). 
6 See Ross (1995). 
7 See for example Bjerksund and Ekern (1995). 
8 More generally we would expect the market price of risk to be related to the business cycle and 

to be correlated with the level of inventories. 
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under the equivalent martingale measure. Then, from the properties of the 
log-normal distribution, we have: 

F(S, T) = E[S(T)] = exp(Eo[X(T)] + 1/2 Varo[X(T)] (6) 

Then: 

F(S, T) = exp Le ln S + (1 - eK)a* + 2(1 - eaKT)1 (7) 

Or, in log form: 

ln F(S, T) = eKT ln S + (1- e KT)a* + - (1 - e2K T) (8) 

This last equation is the one used in the empirical tests. 
It is easy to verify that equation (7) is the solution of the partial differential 

equation: 

1/2ua2S2FSS + K (,u 
- A - ln S)SFS - FT= 0 (9) 

with terminal boundary condition F(S, 0) = S. 

B. Model 2 

The two factor model is based on the one developed by Gibson and Schwartz 
(1990). The first factor is the spot price of the commodity and the second is the 
instantaneous convenience yield, 8.9 These factors are assumed to follow the 
joint stochastic process: 

dS = (, - 8)Sdt + u1Sdzl (10) 

d8 = K(a - 8)dt + U2dz2 (1 1) 

where the increments to standard Brownian motion are correlated with: 

dz,dz2 =pdt. (12) 

Equation (10) is a standard process for the commodity price allowing for a 
stochastic convenience yield, which follows a Ornstein-Uhlenbeck stochastic 
process described in equation (11). Note that if 8, instead of being stochastic as 
in equation (11), is a deterministic function of S, 8(S) = K ln S, Model 2 reduces 
to Model 1, and if 8 is constant it reduces to the model of Brennan and 
Schwartz (1985). 

' The convenience yield can be interpreted as the flow of services accruing to the holder of the 
spot commodity but not to the owner of a futures contract. 
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Defining once again X = In S and applying Ito's Lemma, the process for the 
log price can be written as 

dX = (,u- 8 - 1/2cr2o)dt + oldz1. (13) 

In this model the commodity is treated as an asset that pays a stochastic 
dividend yield 8. Thus, the risk adjusted drift of the commodity price process 
will be r - 8. Since convenience yield risk cannot be hedged, the risk-adjusted 
convenience yield process will have a market price of risk associated with it. 
The stochastic process for the factors under the equivalent martingale mea- 
sure can be expressed as:10 

dS = (r - 5)Sdt + o-1Sdz* (14) 

d8= [K(a - 8) - A]dt + ff2dz'* (15) 

dz*dz* = pdt (16) 

where now A is the market price of convenience yield risk, which is assumed 
constant. Futures prices must then satisfy the partial differential equation: 

1/2aS2Fss + 01a2pSFs8 + 1/2f2F u 

+ (r - 8)SFs + (K(a - 8)- A)Fs-FT = 0 (17) 

subject to the terminal boundary condition F(S, 8, 0) = S. 
Jamshidian and Fein (1990) and Bjerksund (1991) have shown that the 

solution to (17) is:11 

F(S 8 T) = S exp[-8 K e A(T)1 (18) 

Or, in log form: 

1 - e-KT 
ln F(S, 8, T) = ln S - 5 -+A(T) (19) 

where 

A ~~~~A 1 2 0'10f2PA 
A(T) =r a + T + 4 2 

1-1YLJ-\\I 2 K2 K / 4 2K 3 

l o2\ 1 - e KT 

+ jK + UcTa2P - K) 2 (20) 

A 
a = a--. 

K 

0 See Gibson and Schwartz (1990). 
" Brennan and Crew (1995) use this formulation in their article. 
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C. Model 3 

Model 3 is a three-factor model of commodity contingent claims. The sto- 
chastic factors or state variables in the model are the spot price of the com- 
modity, the instantaneous convenience yield, and the instantaneous interest 
rate. By assuming a simple mean reverting process for the interest rate, it is 
possible to obtain a closed form solution for futures prices. 

Assuming that the instantaneous risk free interest rate follows a Ornstein- 
Uhlenbeck stochastic process (as in Vasicek (1977)), Model 2 can easily be 
extended to a three-factor model. Using (14) and (15), the joint stochastic 
process for the factors under the equivalent martingale measure can be ex- 
pressed as: 

dS = (r - 6)Sdt + auSdz4 (21) 

A 

d5 = K(a - 8)dt + o2dz2 (22) 

dr = a(m* - r)dt + u3dz3 (23) 

dz*dzi2 = pldt, dz'*dz3 = P2dt, dz*dz'3 = p3dt. (24) 

Where a and m* are, respectively, the speed of adjustment coefficient and the 
risk adjusted mean short rate of the interest rate process. Futures prices must 
then satisfy the partial differential equation: 

1/2urS2F55 + 1/2 f2F8s + 1/2OU23Frr + o1o2p1SFs8 + U2Of3P2F5r + 1Ol3P3SFSr 

+ (r - S)SFs+ K(a - 5)Fs + a(m* - r)Fr - FT= 0 (25) 

subject to the terminal boundary condition F(S, 8, r, 0) = S. 
The solution to partial differential equation (25) subject to its terminal 

boundary condition can be shown to be:12 

-8(1- e-KT) r(l - e-aT) 
F(S, 8, r, T) = S exp + +C(T) (26) 

Or, in log form: 

8(1 - e-KT) r(1 - e-aT) 
ln F(S, 8, r, T) = ln S - + + C(T), (27) 

K a 

12 This can easily be verified by substitution. 
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where 

C (Ka + (l(02Pl)((l- eK) KT) 
C 

-T K2 

a_2(4(1 - e-KT) - (1 - e2KT) - 2KT) 
4K3 

(am* + (ol(-3p3)((l -e-aT - aT) 
a2 

a2(4(l - e-aT) - (1 - e-2aT) -2aT) 

4a3 

( (1 -e KT) + (1 -eaT) - (1 -e-(K+a)T) 

+ U2Uf3P2 Ka(K + a) 

K2(1 - e-aT) + a2(1 - e-KT) - Ka2T - aK 2T 
+ K2a2(K + a) ). (28) 

Since in this model interest rates are stochastic, futures prices are not equal 
to forward prices. With the assumed risk-adjusted stochastic process for the 
instantaneous interest rate given in equation (23), the present value of a unit 
discount bond payable at time T when the interest rate is r is given by (see 
Vasicek (1977)): 

B (r, T) = exp[ _-e 
a 

+ m*((1- e-aT) -aT) 
LrT 

x -r- a a 

a 23(4( - e-aT) 4( -je -2aT -2aT)1 (2) 

To obtain the present value of a forward commitment to deliver one unit of the 
commodity, P(S, 6, r, T), we need to solve a partial differential equation and 
boundary conditions identical to equation (25) except that in the right-hand 
side we have rP, instead of zero. The solution to this modified equation is 

P(S, 8, r,T)= S e -(1 e ) + D(T)] (30) 

where 

(KaT+ =( 12P1)((1 - ) KT) 

a2(4(l - e KT) - (1 - e 2K) - 2KT) (31) 
4K 3 

Given the present value of a forward commitment in equation (30) and the 
present value of a unit discount bond in equation (29), the forward price 
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implied by Model 3 can be easily obtained by dividing P(S, 6, r, T) by B(r, T). 
Note that the present value of a forward commitment in Model 3 is indepen- 
dent of the interest rate r and is identical to the corresponding one in Model 2. 
Forward prices in both models, however, are different. 

II. Empirical Models 

As mentioned in the introduction, one of the difficulties in the empirical 
implementation of commodity price models is that frequently the factors or 
state variables of these models are not directly observable. For some commod- 
ities the spot price is hard to obtain, and the futures contract closest to 
maturity is used as a proxy for the spot price. The problems of estimating the 
instantaneous convenience yield are even more complex; normally two futures 
prices with different maturities are used to compute the convenience yield.13 
The instantaneous interest rate is also not directly observable. Futures con- 
tracts, however, are widely traded in several exchanges and their prices are 
more easily observed. 

The state space form is the appropriate procedure to deal with situations in 
which the state variables are not observable, but are known to be generated by 
a Markov process. Once a model has been cast in state space form, the Kalman 
filter may be applied to estimate the parameters of the model and the time 
series of the unobservable state variables. 

The general state space form applies to a multivariate time series of observ- 
able variables, in this case futures prices for different maturities, related to an 
unobservable vector of state variables (state vector), in this case the spot price 
alone or both the spot price and the instantaneous convenience yield, via a 
measurement equation. In our context the measurement equations are ob- 
tained from equations (8), (19), and (27) for the one, two, and three-factor 
models, respectively, by adding serially and cross-sectionally uncorrelated 
disturbances with mean zero to take into account bid-ask spreads, price limits, 
nonsimultaneity of the observations, errors in the data, etc. This simple 
structure for the measurement errors is imposed so that the serial correlation 
and cross correlation in the log prices is attributed to the variation of the 
unobservable state variables. The unobservable state variables are generated 
via the transition equation, which in our context is a discrete time version of 
the stochastic process for the state variables: equation (2) for the one-factor 
model and equations (11) to (13) for the two and three-factor models.14 The 
Kalman filter is a recursive procedure for computing the optimal estimator of 
the state vector at time t, based on the information available at time t, and it 
enables the estimate of the state vector to be continuously updated as new 
information becomes available. When the disturbances and the initial state 

13 See for example Gibson and Schwartz (1990). 
14 As we shall explain later, we estimate a simplified version of Model 3 in which the interest 

rate process is estimated separately. 
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vector are normally distributed the Kalman filter enables the likelihood func- 
tion to be calculated, which allows for the estimation of any unknown param- 
eters of the model and provides the basis for statistical testing and model 
specification. For a detailed discussion of state space models and the Kalman 
filter see Chapter 3 in Harvey (1989). 

A. Model 1 

From equation (8) the measurement equation can be written as: 

Yt = dt + ZtXt + St, t = 1, ... , NT 

where 

Yt = [ln F(Ti)], i = 1, . Y. , N, N X 1 vector of observables 

dt= (1 - e KT)a* + 4 (1 - e2kT)] i = 1, . Y. , N, N x 1 vector 

Zt =[e-KTi] i = 1, ..., N, N x 1 vector 

St, N X 1 vector of serially uncorrelated disturbances with 

E(et) = 0, Var(et) = H, (32) 

and from equation (2) the transition equation can be written as:15 

Xt = Ct + QtXt l + 71t) t =,...,NT 

where 

Ct = KaLAt Qt = 1 KAt 

qt, serially uncorrelated disturbances with 

E(t) = 0, Var(qt) = a 2At. (33) 

B. Model 2 

From equation (19) the measurement equation can be written as: 

Yt = dt + Zt[Xt, at]' + t, t =1,...,NT 

5 The exact transition equation is: 

Xt = a(l - e Kt) + eKt Xt_1 + q t 

Using weekly data the linear approximation gives the identical parameters estimates up to the 
fourth significant figure and has been used in all the estimations. 
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where 

Yt = [In F(Ti)], i = 1, ... , N, N x 1 vector of observables 

dt = [A(Ti)], i = 1, . .. , NY N x 1 vector 

1 eKTL1 
Z= K i - , i = 1, . . ., N, N x 2 matrix 

S, N x 1 vector of serially uncorrelated disturbances with 

E(et) = 0, Var(st) = H, (34) 

and from equations (11) to (13) the transition equation can be written as: 

[Xt, 8T] = ct + Qt[Xt-1, 5t-l]' + -q, t = 1, . . ., NT 

where 

Ct = [(- 1/2a 2)At, KaAt]', 2 x 1 vector 

1 L^t 
Qt = 0 1 - KAt 

mqt, serially uncorrelated disturbances with 

a2r2At PU1Q24t 
E(,qt) = 0, Var(-t) = | (35) 

po"1o"2At oT A t 

C. Model 3 

We estimate a simplified version of Model 3. Ideally, the commodity spot 
price process, the convenience yield process, and the interest rate process 
should be estimated simultaneously from a time series and cross-section of fu- 
tures prices and discount bond prices. To simplifSy the estimation we first esti- 
mate the parameters of the interest rate process, and then we use Model 3 to 
estimate the parameters of the spot price and convenience yield processes. We 
are essentially assuming that the parameters of the interest rate process are 
not affected by commodity futures prices, which seems to be a reasonable as- 
sumption. 

Once we have estimated the interest rate process, we have only to estimate 
the parameters and state variables from the spot price and the convenience 
yield processes. From equations (27) and (28) the measurement equation is 
then: 
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Table I 

Oil Data 

Mean Price Mean Maturity 
Futures Contract (Standard Error) (Standard Error) 

Panel A: From 1/2/85 to 2/17/95: 510 Weekly Observations 

Fl $19.99 (4.52) 0.043 (0.024) years 
F3 19.65 (4.08) 0.210 (0.025) 
F5 19.45 (3.74) 0.377 (0.024) 
F7 19.31 (3.51) 0.543 (0.024) 
F9 19.21 (3.35) 0.710 (0.025) 

Panel B: From 1/2/90 to 2/17/95: 259 Weekly Observations 

Fl $20.41 (4.13) 0.043 (0.024) years 
F3 20.26 (3.54) 0.210 (0.025) 
F5 20.09 (3.02) 0.376 (0.025) 
F7 19.94 (2.62) 0.543 (0.025) 
F9 19.84 (2.32) 0.709 (0.025) 

Panel C: From 1/2/90 to 2/17/95: 259 Weekly Observations 

Fl $20.41 (4.13) 0.043 (0.024) years 
F5 20.09 (3.02) 0.376 (0.025) 
F9 19.84 (2.32) 0.709 (0.025) 
F13 19.76 (1.95) 1.041 (0.025) 
F17 19.76 (1.74) 1.374 (0.025) 

Mean Price Mean Maturity 
Forward Maturity (Standard Error) (Standard Error) 

Panel D: From 1/15/93 to 5/16/96: 163 Weekly Observations (Enron Data) 

2 Months 18.16 (1.54) 0.122 (0.024) 
5 Months 18.00 (1.31) 0.372 (0.024) 
8 Months 18.00 (1.23) 0.621 (0.024) 
1 Year 18.05 (1.15) 0.955 (0.024) 
11/2 Years 18.20 (1.09) 1.457 (0.024) 
2 Years 18.38 (1.03) 1.955 (0.024) 
3 Years 18.81 (0.95) 2.955 (0.024) 
5 Years 19.67 (0.87) 4.955 (0.024) 
7 Years 20.34 (0.79) 6.955 (0.024) 
9 Years 20.92 (0.71) 8.955 (0.024) 

where 

Yt = [ln F(Ti)], i = 1, ... , N, N x 1 vector of observables 

E(1 - eaT) (T i = 1, ... ,N, N x 1 vector 

r [i l 1 - eN-KT2 t 
Zt= 1, - 

K | Y 1, . .. ., NY N X 2 matrix 
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Oil Futures Contracts Maturity (Fl, F3, F5, F7, F9): 1/2/85 to 2117/95 
0.8 
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Calendar Time 

Figure 1. The figure shows for each week the time to maturity for the five oil futures 
contracts used in the estimation, starting from 1/2/85 to 2/17/95. This pattern of time to 
maturity is representative of all the data used. 

St, N x 1 vector of serially uncorrelated disturbances with 

E(-t) = 0, Var(st) = H. (36) 

Since we are using the Kalman filter to estimate the same state variables as in 
Model 2, the transition equation for this model is also (35). 

III. Data 

The data used to test the models consist of weekly observationsl6 of futures 
prices for two commercial commodities, oil and copper, and one precious metal, 
gold. In every case five futures contracts (i.e., N = 5) were used in the 
estimation.'7 For different commodities and different time periods, however, 
different specific futures contracts had to be used since they vary across 
commodities and through time for a particular commodity. The interest rate 

16 The data obtained from Knight-Ridder Financial consists of daily observations. To approx- 
imately transform it into weekly data every fifth observation from the original data was used in 
the empirical tests. 

17 Except for the Enron oil data, where 10 contracts were used in the estimation. 
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Table II 

Copper Data 

Panel A: From 7/29/88 to 6/13/95: 347 Weekly Observations 

Mean Price Mean Maturity 
Futures Contract (Standard Error) (Standard Error) 

Fl 110.04 (18.05) cents 0.109 (0.065) years 
F3 105.45 (13.54) 0.504 (0.084) 
F5 102.42 (10.95) 0.899 (0.065) 
F7 100.46 (9.34) 1.299 (0.085) 
F9 99.78 (8.79) 1.663 (0.111) 

Table III 

Gold Data 

Mean Price Mean Maturity 
Futures Contract (Standard Error) (Standard Error) 

Panel A: From 1/2/85 to 6/13/95: 527 Weekly Observations 

Fl $379.27 (40.95) 0.084 (0.048) years 
F3 386.12 (42.46) 0.417 (0.048) 
F6 397.55 (44.96) 0.917 (0.048) 
F9 409.95 (47.79) 1.416 (0.048) 
Fll 418.87 (49.79) 1.749 (0.049) 

Panel B: From 11/21/90 to 6/13/95: 230 Weekly Observations 

Fl $365.50 (19.57) 0.084 (0.048) years 
F3 370.12 (20.56) 0.417 (0.048) 
F6 378.02 (22.30) 0.917 (0.048) 
F9 386.70 (24.11) 1.413 (0.048) 
Fll 393.03 (25.32) 1.745 (0.049) 

Panel C: From 11/21/90 to 6/13/95: 230 Weekly Observations 

Fl $365.50 (19.57) 0.084 (0.048) years 
F5 375.31 (21.70) 0.750 (0.048) 
F9 386.70 (24.11) 1.413 (0.048) 
F13 403.02 (27.05) 2.237 (0.144) 
F18 460.85 (33.93) 4.703 (0.145) 

data consisted in yields on 3-Month Treasury Bills. These data was used in the 
models requiring variable interest rates. 

The oil data used are described in Table I. From 1/2/85 to 2/17/95, complete 
data on the first nine contracts were available, so the first set of tests used 
contracts Fl, F3, F5, F7, and F9 (see Panel A), where Fl is the contract closest 
to maturity, F2 is the second contract closest to maturity, and so on. Since the 
contracts have a fixed maturity date, the time to maturity changes as time 
progresses. Figure 1 shows that time to maturity remains within a narrow 
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Table IV 

One Factor Model: Oil 

1/2/85 to 1/2/90 to 1/2/90 to 1/15/93 to 
Period 2/17/95 2/17/95 2/17/95 5/16/96 

Fl, F3, F5, Fl, F3, F5, Fl, F5, F9, Enron 
Contracts F7, F9 F7, F9 F13, F17 Data 

NOBS 510 259 259 163 
K 0.301 (0.005) 0.694 (0.010) 0.428 (0.008) 0.099 (0.003) 

A 3.093 (0.346) 3.037 (0.228) 2.991 (0.280) 2.857 (0.635) 
0f 0.334 (0.005) 0.326 (0.008) 0.257 (0.007) 0.129 (0.007) 
A -0.242 (0.346) -0.072 (0.228) 0.002 (0.279) -0.320 (0.636) 

0.049 (0.003) 0.045 (0.005) 0.080 (0.006) 0.079 (0.012) 
0.018 (0.001) 0.017 (0.002) 0.031 (0.004) 0.046 (0.033) 

(3 0 0 0.010 (0.001) 0.029 (0.025) 
(4 0.012 (0.002) 0.009 (0.002) 0 0.014 (0.005) 
65 0.022 (0.003) 0.015 (0.003) 0.007 (0.001) 0 
(6 0.007 (0.001) 

0.018 (0.003) 
(8 0.031 (0.015) 

09 0.035 (0.029) 
(10 0.035 (0.019) 
Log-likelihood 8130 4369 4345 5146 

function 

* (Standard errors in parentheses) 
NOBS = number of observations. 

Oil Futures Prediction Errors: Model 1 (112185 to 2117195) 
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Figure 2. The figure shows for each week the Model 1 oil futures prediction errors for 
the five futures contracts used in the estimation, starting from 1/2/85 to 2/17/95. 
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State Variable (X) and Futures Price (Fl) for Oil: Model 1 (112185 to 2117195) 
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Figure 3. The figure shows for each week the Model 1 estimated state variable (the 
logarithm of the spot price) and the logarithm of the oil futures price for the contract 
closest to maturity, starting from 1/2/85 to 2/17/95. 

Table V 

One Factor Model: Copper 

Period 7/29/88 to 6/13/95 

Contracts Fl, F3, F5, F7, F9 

NOBS 347 
K 0.369 (0.009) 
,ll 4.854 (0.230) 
0f 0.233 (0.007) 
A -0.339 (0.230) 
41 0.064 (0.002) 

0.023 (0.001) 
(3 0 
$4 0.015 (0.001) 
65 0.021 (0.002) 
Log-likelihood function 5482 

* (Standard errors in parentheses) 
NOBS = number of observations. 

range for each one of the contracts during the whole sample period. The figure 
is representative of the maturity structure for all the data used in this study. 
Starting in 1/2/90, complete data on 17 oil futures contracts were available 
extending the maximum maturity of the contracts from an average of 0.71 
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Table VI 

Two Factor Model: Oil 

1/2/85 to 1/2/90 to 1/2/90 to 1/15/93 to 
Period 2/17/95 2/17/95 2/17/95 5/16/96 

Fl, F3, F5, Fl, F3, F5, Fl, F5, F9, Enron 
Contracts F7, F9 F7, F9 F13, F17 Data 

NOBS 510 259 259 163 

A 0.142 (0.125) 0.244 (0.150) 0.238 (0.160) 0.082 (0.120) 
K 1.876 (0.024) 1.829 (0.033) 1.488 (0.027) 1.187 (0.026) 
a 0.106 (0.025) 0.184 (0.110) 0.180 (0.126) 0.090 (0.086) 
o-1 0.393 (0.007) 0.374 (0.011) 0.358 (0.010) 0.212 (0.011) 
o-2 0.527 (0.015) 0.556 (0.024) 0.426 (0.017) 0.187 (0.012) 
p 0.766 (0.013) 0.882 (0.013) 0.922 (0.006) 0.845 (0.024) 
A 0.198 (0.166) 0.316 (0.203) 0.291 (0.190) 0.093 (0.101) 
41 0.022 (0.001) 0.020 (0.001) 0.043 (0.002) 0.027 (0.001) 
62 0.001 (0.001) 0 0.006 (0.001) 0.006 (0.001) 
63 0.003 (0.001) 0.004 (0.000) 0.003 (0.000) 0 
64 0 0 0 0.002 (0.000) 
(5 0.005 (0.000) 0.006 (0.000) 0.004 (0.000) 0 
(6 0.004 (0.000) 
(7 0.014 (0.003) 
(8 0.032 (0.015) 
09 0.043 (0.036) 
(10 0.055 (0.039) 
Log-likelihood 10267 5256 5139 6182 

function 

* (Standard errors in parentheses) 
NOBS = number of observations. 

years to 1.34 years. Longer maturity contracts are of most interest in this 
study, since we will be concerned with investment decisions in real assets with 
much longer maturities. The second set of tests (see Panel C), then used 
contracts Fl, F5, F9, F13, and F17. To be able to distinguish whether the 
possible differences between these two tests were due to the time period used 
or to the contracts used, a third set of tests were done using the contracts of the 
first set of tests over the period of the second set of tests (see Panel B). 

The High Grade copper futures contract started trading in 1988, so complete 
data on the first nine contracts were available from 7/29/88 to 6/13/95 (see Table 
II). The only set of tests performed for copper used contracts Fl, F3, F5, F7, and 
F9. In the case of copper, however, the last contract had an average maturity of 
1.66 years (contract F17 for oil has an average maturity of only 1.34). 

The gold data are shown in Table III. Complete data for the first eleven 
contracts were available from 1/2/85 to 6/13/95, so the first set of tests used 
contracts Fl, F3, F6, F9, and Fli (see Panel A). The average maturity of the 
Fli contracts was 1.75 years. Starting on 11/21/90, complete data on the first 
18 contracts were available so the second set of tests used contracts Fl, F5, F9, 
F13, and F18, extending the average maturity of the longest contract to 4.70 
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State Variables and Futures Price for Oil: Model 2 (112/85 to 2117195) 
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Figure 4. The figure shows for each week the Model 2 estimated state variables (the 
logarithm of the spot price and the instantaneous convenience yield) and the logarithm 
of the oil futures price for the contract closest to maturity, starting from 1/2/85 to 
2/17/95. A fixed amount of 2 has been added to each value of the convenience yield to make its scale 
comparable to the other variables shown. 

years (see Panel C). As was done for the case of oil, a third set of tests was 
performed using the same contracts as in the first tests during the period of the 
second tests (see Panel B). 

In addition to the publicly available futures data described above, for the 
purposes of this study Enron Capital and Trade Resources made available 
some proprietary historical crude oil forward price curves from 1/15/93 to 
5/16/96. From these data ten forward prices were used in the estimation, 
ranging in maturities from two months to nine years (see Panel D of Table I). 
The great advantage of these data is the longer maturities of the contracts. The 
disadvantage is that we do not know exactly how the crude oil forward curves 
were constructed. 

IV. Empirical Results 

A. Model 1 

Table IV presents the results for the one-factor model applied to the four 
data sets for oil described in Table I. In all cases the speed of adjustment 
coefficient is highly significant, and the market price of risk is not significantly 
different from zero. The main difference between Columns 2 and 3, which use 
the same contracts, is that the later period has much stronger mean reversion 
(0.7 as opposed to 0.3 for the whole period). The other parameters are very 
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Oil Futures Prediction Errors: Model 2 (1/2/85 to 2117/95) 
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Figure 5. The figure shows for each week the Model 2 oil futures prediction errors for 
the five futures contracts used in the estimation, starting from 1/2/85 to 2/17/95. 

Table VII 

Two Factor Model: Copper 

.. 

Period 7/29/88 to 6/13/95 

Contracts Fl, F3, F5, F7, F9 

NOBS 347 
,u ~~~~~~~~~0.326 (0.110) 

K 1 .156 (0.041 ) 
oa 0.248 (0.098) 
cl1 0.274 (0.012) 
a2 0.280 (0.017) 
p 0.818 (0.020) 
A 0.256 (0. 14) 

(l30.033 (0.001) 
4 f0.003 (0.001) 

(3 ~~~~~~~~~0.006 (0.000) 
64 ~~~~~~~~~0.005 (0.000) 
(5 ~~~~~~~~~~0.009 (0.001) 

Log-likelihood function 6473 

* (Standard errors in parentheses) 
NOBS = number of observations. 

similar both in magnitude and significance. In all cases, one of the standard 
deviations of the measurement errors goes to zero. This is a common phenom- 
enon in this type of analysis. 
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Table VIII 

Two Factor Model: Gold 

Period 1/2/85 to 6/13/95 11/21/90 to 6/13/95 11/21/90 to 6/13/95 

Contracts Fl, F3, F6, F9, Fll Fl, F3, F6, F9, Fll Fl, F5, F9, F13, F18 

NOBS 527 230 230 
,u 0.039 (0.044) 0.033 (0.054) 0.030 (0.054) 
K 0.011 (0.008) 0.114 (0.015) 0.298 (0.018) 
a -0.002 (0.322) 0.018 (0.052) 0.019 (0.023) 
o1 0.135 (0.003) 0.106 (0.004) 0.107 (0.004) 
o-2 0.016 (0.001) 0.0124 (0.0007) 0.015 (0.001) 
p 0.056 (0.034) 0.113 (0.066) 0.250 (0.068) 
A 0.0067 (0.0036) 0.0076 (0.0060) 0.008 (0.007) 
(1 0.003 (0.000) 0.002 (0.000) 0.004 (0.000) 
(2 0 0 0 
(3 0.001 (0.000) 0.001 (0.000) 0.001 (0.001) 
(4 0 0 0.001 (0.000) 
(5 0.001 (0.000) 0.001 (0.000) 0.012 (0.001) 
Log-likelihood function 14437 6662 5660 

* (Standard errors in parentheses) 
NOBS = number of observations. 

The prediction errors18 for the first oil data set are shown in Figure 2. 
Though the average error is quite small, 0.0032, the average absolute devia- 
tion is 0.033, which is around one percent of the log of the price of the futures 
contract closest to maturity, reflecting some very large deviations in the figure. 
Note also that there seems to be some negative autocorrelation of the errors, 
which could imply the existence of some errors in the data. Figure 3 presents 
the value of the state variable and the log of the first futures contract for the 
same data set. Here we can see that the state variable (the log of the spot price) 
follows closely, but is not identical to, the log of the price of the futures contract 
closest to maturity (Fl). 

Comparing now Columns 3 and 4 of Table IV, which use the same time 
period but different futures contracts, we see that the main effect of extending 
the maturity of the contracts is to reduce the mean reversion parameter (from 
0.7 to 0.4). This can have important implications in the application of this 
model to long term oil investment, since in this case the relevant futures 
contracts would be much longer in maturity. Even though the Enron data 
covers a different time period (with some overlap), from Column 5 we can see 
that the mean reversion parameter is even smaller (0.1). 

Table V shows the results of applying the one factor model to the copper 
data. These results are similar to those for oil. There is strong and significant 
mean reversion (of 0.37) and the market price of risk is positive, but not 
significantly different from zero. 

18 Also called innovations since they represent the new information in the latest observation. 
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Table IX 

Three Factor Model: Oil 

Period 1/2/90 to 2/17/95 1/15/93 to 5/16/96 

Contracts Fl, F5, F9, F13, F17 Enron Data 

NOBS 259 163 
0.315 (0.125) 0.008 (0.109) 

K 1.314 (0.027) 0.976 (0.022) 
a 0.249 (0.093) 0.038 (0.077) 
o1 0.344 (0.009) 0.196 (0.009) 
o-2 0.372 (0.014) 0.145 (0.008) 
pl 0.915 (0.007) 0.809 (0.027) 
A 0.353 (0.123) 0.013 (0.075) 
(1 0.045 (0.002) 0.028 (0.001) 
(2 0.007 (0.001) 0.006 (0.001) 
(3 0.003 (0.000) 0 
$4 0 0.002 (0.000) 
(5 0.004 (0.000) 0.000 (0.001) 
(6 0.005 (0.000) 
(7 0.013 (0.002) 
(8 0.024 (0.008) 
09 0.032 (0.014) 
(10 0.053 (0.023) 
Log-likelihood function 5128 6287 
o-3 0.0081 0.0073 
a 0.2 0.2 
R(oo) 0.07 0.07 
p2 -0.0039 0.0399 
p3 -0.0293 -0.0057 

* (Standard errors in parentheses) 
NOBS = number of observations. 

The one-factor model could not be fitted to the gold data, giving us a first 
indication that there is no detectable mean reversion in gold prices for the 
period considered. 

B. Model 2 

The risk-free rate of interest, r, which is assumed constant, is a parameter 
in Model 2. It appears in the measurement equation (23) through A(T) defined 
in equation (20). For purposes of estimating this two-factor model, we assumed 
a constant risk-free interest rate of 0.06, which was approximately the average 
interest rate over the period considered.19 The risk-free rate enters into the 
analysis through the risk-adjusted process for the spot price described in 
equation (14). From this equation it can be seen that any variation in the 
interest rate through time will be absorbed by variations in the convenience 

19 For the Enron oil data we used an interest rate of 0.05, since in this latter period interest 
rates were lower. 
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Table X 

Three Factor Model: Copper 

Period 7/29/88 to 6/13/95 

Contracts Fl, F3, F5, F7, F9 

NOBS 347 
11 0.332 (0.094) 
K 1.045 (0.030) 
a 0.255 (0.078) 
o1 0.266 (0.011) 
(r2 0.249 (0.014) 
pl 0.805 (0.022) 
A 0.243 (0.082) 
(1 0.032 (0.001) 
(2 0.004 (0.001) 
(3 0.005 (0.000) 
(4 0.005 (0.000) 
(5 0.007 (0.000) 
Log-likelihood function 6520 
o-3 0.0096 
a 0.2 
R(O?) 0.07 
p2 0.1243 
p3 0.0964 

* (Standard errors in parentheses) 
NOBS = number of observations. 

yield. The estimated instantaneous convenience yield will then be a composite 
of the actual convenience yield and the deviations of the interest rate from 
0.06. 

Table VI reports the results of the two-factor model for the four oil data sets. 
In all cases the speed of adjustment coefficient in the convenience yield equa- 
tion and the correlation coefficient between the two factors are large and 
highly significant; the total expected return on the spot commodity (A), the 
average convenience yield, and the market price of convenience yield risk are 
positive but not always significant at standard levels. It is interesting to note 
that the estimations that use longer term futures have a somewhat lower mean 
reversion coefficient (1.2 for the Enron data versus 1.5 for the longer term data 
and 1.8 for the shorter term oil data). Figure 4 shows the two state variables 
for the first data set, which covers all the sample period20 and the log price of 
the futures contract closest to maturity. The strong correlation between the 
two state variables (0.77) and the closeness between the log spot price and the 
log of Fl can be observed from the figure. Figure 5 displays the prediction 
errors. Both the mean error of 0.0016 and the average absolute deviation of 
0.029 are smaller than those in Model 1 (see Figure 2). 

20 A fixed amount of 2 has been added to each value of the convenience yield to make its scale 
more comparable with the log of the spot price. 
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Table XI 

Three Factor Model: Gold 

Period 11/21/90 to 6/13/95 

Contracts Fl, F5, F9, F13, F18 

NOBS 230 
0.023 (0.054) 

K 0.023 (0.023) 
a 0.021 (0.189) 
o1 0.106 (0.004) 
o-2 0.009 (0.001) 
pl 0.208 (0.069) 
A 0.002 (0.004) 
(1 0.003 (0.000) 
(2 0 
(3 0.001 (0.000) 
$4 0.001 (0.000) 
(5 0.015 (0.001) 
Log-likelihood function 5688 
o-3 0.0082 
a 0.2 
R(oo) 0.07 
p2 -0.4005 
p3 -0.0260 

* (Standard errors in parentheses) 
NOBS = number of observations. 

The results for copper, presented in Table VII, also show very strong and 
significant correlation between the state variables and mean reversion in the 
convenience yield. The total expected return on copper, the average conve- 
nience yield, and the market price of risk are also positive and significant, but 
not as strongly as the other parameters. Note that the average convenience 
yield is high (25 percent per year) because we are estimating instantaneous 
convenience yields, that is for futures contracts maturing in the next instant of 
time. 

The results for gold, displayed in Table VIII, differ importantly from those 
for the commercial commodities. The mean reversion in the convenience yield 
and the correlation between the state variables are significant only in the later 
period and of much smaller magnitude, 0.3 and 0.25, respectively, for the 
longer term data. The total expected return, average convenience yield, and 
market price of risk are insignificant in all cases. As we shall see when we 
discuss the three-factor model, even the mean reversion in the convenience 
yield becomes insignificant when stochastic interest rates are considered, 
which suggests that in the two-factor model, mean reversion in convenience 
yield is proxying for mean reversion in interest rates (which are assumed 
constant in this model). 
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Figure 6. (a) The figure shows the term structure of oil futures prices for 1/2/90, the 
starting date for the long term oil data, and the term structure implied by the three 
models. (b) The figure shows the term structure of oil futures prices for 12/22/93, a date 
on which oil futures prices were in contango, and the term structure implied by the 
three models. (c) The figure shows the term structure of oil futures prices for 2/17/95, the 
last date for the oil data, and the term structure implied by the three models. 

Table XII 

Cross-Section Comparison Between Models 1, 2, and 3 Out of Sample 
Oil Data 1/2/90 to 2/17/95 

RMSE Mean Error 

Model Contract 1 2 3 1 2 3 

Panel A: In Dollars 

F2 1.537 0.538 0.577 0.453 -0.057 -0.032 
F3 1.215 0.325 0.363 0.376 -0.019 -0.003 
F4 0.952 0.183 0.22 0.3 0.004 0.013 
F6 0.55 0.061 0.074 0.163 0.01 0.011 
F7 0.41 0.058 0.056 0.108 0.006 0.005 
F8 0.296 0.054 0.044 0.063 0 -0.001 
F10 0.138 0.045 0.037 0.009 -0.005 -0.006 
Fll 0.082 0.035 0.03 -0.001 -0.003 -0.004 
F12 0.039 0.02 0.019 -0.003 -0.001 -0.002 
F14 0.039 0.02 0.019 0.009 0.001 0.001 
F15 0.075 0.036 0.034 0.021 0.001 0.001 
F16 0.109 0.053 0.051 0.037 0.001 0 
All 0.668 0.193 0.21 0.128 -0.005 -0.001 

Panel B: In Percentage 

F2 6.203 2.574 2.795 1.566 -0.273 -0.188 
F3 4.94 1.546 1.737 1.386 -0.091 -0.035 
F4 3.92 0.862 1.032 1.159 0.012 0.045 
F6 2.369 0.272 0.329 0.671 0.042 0.046 
F7 1.814 0.253 0.238 0.45 0.021 0.018 
F8 1.35 0.256 0.204 0.268 -0.003 -0.008 
F10 0.664 0.218 0.179 0.04 -0.024 -0.03 
Fll 0.406 0.169 0.146 -0.002 -0.016 -0.02 
F12 0.194 0.099 0.089 -0.013 -0.006 -0.008 
F14 0.192 0.1 0.093 0.038 0.005 0.005 
F15 0.366 0.18 0.171 0.095 0.007 0.006 
F16 0.536 0.265 0.257 0.171 0.007 0.004 
All 2.74 0.92 1.011 0.486 -0.027 -0.014 

C. Model 3 

The parameters for the risk-adjusted interest rate process (23) were ob- 
tained using 3-month Treasury Bill yields. The standard deviation of changes 
in r, o-3, for each data set were computed using contemporaneous yields. As 
reported in Tables IX, X, and XI, this standard deviation varied from 0.0073 to 
0.0096 for different time periods. The speed of adjustment coefficient of the 
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Figure 7. (a) The figure shows the term structure of copper futures prices for 7/29/88, the 
starting date for the copper data, and the term structure implied by the three models. 
(b) The figure shows the term structure of copper futures prices for 7/13/93, a date on 
which copper futures prices were in contango, and the term structure implied by the 
three models. (c) The figure shows the term structure of copper futures prices for 
6/13/95, the last date for the copper data, and the term structure implied by the three 
models. 

Table XIII 

Cross-Section Comparison Between Models 1, 2, and 3 Out of Sample 
Copper Data 7/29/88 to 6/13/95 

RMSE Mean Error 

Model Contract 1 2 3 1 2 3 

Panel A: In Cents 

F2 4.617 1.311 1.27 1.75 -0.155 -0.142 
F4 1.17 0.548 0.539 0.327 0.116 0.119 
F6 1.133 0.616 0.621 -0.194 -0.105 -0.098 
F8 1.824 0.534 0.482 0.257 -0.042 -0.064 
All 2.612 0.819 0.794 0.535 -0.046 -0.046 

Panel B: In Percentage 

F2 3.929 1.103 1.073 1.404 -0.151 -0.135 
F4 1.063 0.483 0.474 0.284 0.093 0.094 
F6 1.064 0.568 0.572 -0.188 -0.102 -0.097 
F8 1.78 0.512 0.462 0.213 -0.036 -0.058 
All 2.284 0.713 0.692 0.428 -0.049 -0.049 

process, a, was assumed to be equal to 0.2, which implies that one half of any 
deviation from the average interest rate is expected to be corrected in 3.5 
years.21 The risk-adjusted drift of the process, m*, was computed so that the 
infinite maturity discount yield be 7 percent. In the Vasicek model this infinite 
maturity yield is: 

2 

R(oo) - m* - 2a3 (37) 

The instantaneous correlations between the interest rate process and the 
process for the log spot price and the convenience yield defined in equation (24) 
were approximated by the correlations obtained using weekly data between 
the three-month Treasury Bill yield and the values of these state variables 
obtained from Model 2. The estimated value of these correlations are shown in 

21 The mean reversion coefficient can be obtained by running a regression of changes in interest 
rate on lagged interest rates. Since there is a lot of measurement error on this parameter, we took 
an average value. 
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Figure 8. (a) The figure shows the term structure of oil futures prices for 1/15/93, the 
starting date for the Enron oil data, and the term structure implied by the three models. 
(b) The figure shows the term structure of oil futures prices for 2/15/94, a date on which 
the Enron oil futures prices were in contango, and the term structure implied by the 
three models. (c) The figure shows the term structure of oil futures prices for 5/16/96, the 
last date for the Enron oil data, and the term structure implied by the three models. 

Table XIV 

Cross-Section Comparison Between Models 1, 2, and 3 Out of Sample 
Enron Oil Data 1/15/93 to 5/16/96 

RMSE Mean Error 

Model Contract 1 2 3 1 2 3 

Panel A: In Dollars 

1 Month 1.86 0.905 0.942 0.839 0.332 0.427 
4 Months 0.934 0.179 0.181 0.413 0.05 0.089 
7 Months 0.588 0.028 0.028 0.254 0.005 0.012 
10 Months 0.358 0.034 0.033 0.153 -0.005 -0.014 
15 Months 0.108 0.033 0.031 0.043 -0.004 -0.013 
21 Months 0.078 0.046 0.043 -0.027 0.009 0.021 
2? Years 0.245 0.183 0.162 -0.058 0.039 0.093 
4 Years 0.505 0.493 0.439 0.095 0.185 0.283 
6 Years 0.713 0.802 0.575 0.191 0.092 0.135 
8 Years 0.756 1.027 0.792 0.221 -0.238 -0.395 
All 0.789 0.532 0.459 0.212 0.046 0.064 

Panel B: In Percentage 

1 Month 9.428 4.305 4.46 3.958 1.701 2.182 
4 Months 5.247 0.967 0.987 2.113 0.303 0.506 
7 Months 3.347 0.155 0.156 1.335 0.034 0.068 
10 Months 2.036 0.184 0.181 0.819 -0.034 -0.079 
15 Months 0.611 0.177 0.172 0.235 -0.03 -0.077 
21 Months 0.435 0.249 0.242 -0.148 0.057 0.12 
21/2 Years 1.316 0.962 0.885 -0.31 0.242 0.522 
4 Years 2.584 2.506 2.257 0.461 0.997 1.483 
6 Years 3.499 3.925 2.813 0.883 0.47 0.666 
8 Years 3.586 4.944 3.827 0.996 -1.154 -1.933 
All 4.072 2.582 2.224 1.034 0.259 0.346 

Tables IX, X, and XI. Apart from the correlation between the interest rate and 
the convenience yield for copper (0.12) and gold (0.4), the other correlations 
were very close to zero.22 

22 Since the correlation between the interest rate process and the commodity spot process is 
zero, futures prices are equal to forward prices (see Cox, Ingersoll, and Ross (1981)); in the 
estimation we treated the forward prices in the Enron data as futures prices. 
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Table XV 

Time Series Comparison Between Models 1, 2, and 3: Last 50 
Observations of Oil Data 

RMSE (of Log Prices) Mean Error (of Log Prices) 

Model 1 2 3 1 2 3 

Panel A: In-Sample Parameter Estimation 

Fl 0.0830 0.0538 0.0540 0.0628 0.0291 0.0279 
F5 0.0390 0.0240 0.0248 0.0260 0.0049 0.0040 
F9 0.0230 0.0195 0.0194 0.0096 0.0003 -0.0007 
F13 0.0171 0.0170 0.0170 0.0012 0.0012 0.0001 
F17 0.0157 0.0161 0.0160 -0.0033 0.0034 0.0016 
All 0.0435 0.0300 0.0299 0.0193 0.0077 0.0066 

Panel B: Out-of-Sample Parameter Estimation 

Fl 0.0919 0.0551 0.0541 0.0770 0.0315 0.0289 
F5 0.0378 0.0249 0.0246 0.0273 0.0045 0.0030 
F9 0.0198 0.0195 0.0195 0.0020 -0.0004 -0.0017 
F13 0.0210 0.0170 0.0170 -0.0125 0.0014 0.0002 
F17 0.0262 0.0166 0.0162 -0.0212 0.0050 0.0028 
All 0.0477 0.0303 0.0299 0.0145 0.0084 0.0066 

Tables IX and X present the parameter estimates for Model 3 for oil and 
copper, respectively.23 For both oil and copper these results are quite close to 
those of Model 2. The parameters of the processes for the spot price and 
convenience yield seem to be robust to the specification of the interest rate 
process. This does not mean, however, that the value of a futures contract is 
insensitive to the interest rate used in the computation. 

Table XI reports the parameter estimates of Model 3 for gold. The fact that 
the mean reversion in the convenience yield becomes insignificant when sto- 
chastic interest rates are included and that the correlation between changes in 
the interest rate and the convenience yield is so high in absolute terms (-0.4) 
suggests that the models are misspecified for gold. Mean reversion in prices 
induced by a mean-reverting convenience yield does not seem to hold for gold. 

D. Comparing the Three Models 

For the purpose of comparing the relative performance of the three models, 
we will concentrate on three data sets: the long term oil futures data, the 
copper futures data, and the Enron oil forward data. Figures 6, 7, and 8 
illustrate how the three models fit the data for three dates in the sample 
period. These dates were the first observation in the sample, the last observa- 
tion in the sample, and an intermediate observation chosen so that futures 

23 The results for the shorter maturity data sets are similar. For this reason, in what follows we 
report only results for the longer term data. 
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Table XVI 

Time Series Comparison Between Models 1, 2, and 3: Last 50 
Observations of Copper Data 

RMSE (of Log Prices) Mean Error (of Log Prices) 

Model 1 2 3 1 2 3 

Panel A: In-Sample Parameter Estimation 

Fl 0.0453 0.0430 0.0412 0.0046 -0.0253 -0.0232 
F3 0.0294 0.0216 0.0217 0.0061 0.0029 0.0024 
F5 0.0192 0.0194 0.0190 0.0027 0.0070 0.0062 
F7 0.0207 0.0180 0.0180 -0.0000 -0.00126 -0.0016 
F9 0.0255 0.0187 0.0186 0.0140 -0.00021 -0.0003 
All 0.0296 0.0260 0.0253 0.0055 -0.0034 -0.0033 

Panel B: Out-of-Sample Parameter Estimation 

Fl 0.0455 0.0467 0.0434 0.0058 -0.0301 -0.0264 
F3 0.0295 0.0218 0.0216 0.0068 0.0030 0.0023 
F5 0.0193 0.0199 0.0193 0.0031 0.0080 0.0068 
F7 0.0207 0.0182 0.0181 0.0001 -0.0013 -0.0015 
F9 0.0256 0.0188 0.0188 0.0141 -0.0018 -0.0012 
All 0.0297 0.0273 0.0261 0.0060 -0.0044 -0.0040 

prices were in contango, since the first and last observations were in back- 
wardation.24 Figures 6a, 6b, and 6c correspond to the long term oil data, 
Figures 7a, 7b, and 7c to the copper data, and Figures 8a, 8b, and 8c to the 
Enron oil data. From these figures we can observe that Model 1 is very often 
incapable of adequately describing the data. From equation (7) we can see that 
when the maturity of the futures contract tends to infinity, in Model 1 the 
futures price converges to: 

F(S, oo) = exp[a* + (38) 

which is independent of the spot price. For the estimated parameters of Model 
1 the infinite maturity futures prices are 20.13 dollars for the long-term oil 
data, 22.99 dollars for the Enron oil data, and 88.08 cents for the copper data. 
When the spot price is above these infinite maturity futures price, Model 1 will 
be in backwardation and when the spot price is below it will be in contango. 
This feature does not allow for much flexibility in the term structure of futures 
prices. 

From Figures 6 and 7 we can also observe that the term structure of futures 
prices implied by Models 2 and 3 for the long-term oil data and the copper data 
are sometimes indistinguishable and that they are always very close to each 
other. This holds true for all the in-sample term structures. As we shall see in 

24 The illustrations are representative of the rest of the observations in the sample. 
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Table XVII 

Time Series Comparison Between Models 1, 2, and 3: Last 50 
Observations of Enron Oil Data 

RMSE (of Log Prices) Mean Error (of Log Prices) 

Model 1 2 3 1 2 3 

Panel A: In-Sample Parameter Estimation 

2 Months 0.1184 0.0480 0.0522 0.1024 0.0287 0.0340 
5 Months 0.0646 0.0213 0.0220 0.0563 0.0047 0.0071 
8 Months 0.0422 0.0173 0.0173 0.0353 0.0010 0.0019 
1 Year 0.0239 0.0149 0.0149 0.0168 -0.0001 0.0002 
11/2Years 0.0129 0.0131 0.0132 -0.0001 0.0006 0.0013 
2 Years 0.0151 0.0144 0.0152 -0.0075 0.0040 0.0056 
3 Years 0.0201 0.0155 0.0173 -0.0145 0.0080 0.0101 
5 Years 0.0270 0.0193 0.0160 -0.0154 0.0103 0.0065 
7 Years 0.0280 0.0215 0.0183 -0.0086 0.0085 -0.0077 
9 Years 0.0221 0.0177 0.0358 -0.0002 0.0009 -0.0318 
All 0.0483 0.0225 0.0251 0.0164 0.0067 0.0027 

Panel B: Out-of-Sample Parameter Estimation 

2 Months 0.1391 0.0540 0.0622 0.1258 0.0364 0.0450 
5 Months 0.0810 0.0221 0.0242 0.0744 0.0075 0.0117 
8 Months 0.0534 0.0172 0.0172 0.0485 0.0012 0.0021 
1 Year 0.0297 0.0150 0.0149 0.0241 -0.0010 -0.0031 
1?2Years 0.0128 0.0131 0.0132 -0.0002 0.0008 -0.0034 
2 Years 0.0186 0.0157 0.0126 -0.0135 0.0067 0.0017 
3 Years 0.0319 0.0215 0.0165 -0.0288 0.0163 0.0110 
5 Years 0.0429 0.0301 0.0225 -0.0360 0.0263 0.0183 
7 Years 0.0392 0.0338 0.0196 -0.0274 0.0297 0.0133 
9 Years 0.0267 0.0303 0.0142 -0.0131 0.0264 -0.0025 
All 0.0594 0.0279 0.0258 0.0154 0.0150 0.0094 

Section VI, this does not mean that both models have the same implications for 
futures prices with longer maturities than the observable ones. For the Enron 
oil data, however, Models 2 and 3 can imply quite different term structure of 
futures prices, as shown in Figure 8. 

The empirical models we have estimated are not nested, so a statistical 
comparison between them is not straightforward.25 Model 1 is not nested in 
Model 2 nor 3. Even though Model 2 is nested in Model 3, we estimate the same 
number of parameters in both models since in Model 3 we take as exogenous 
the parameters of the interest rate process. This complicates the interpretation 
of the likelihood function value. 

To compare the relative performance of the models we performed two types 
of tests. The first were cross-section tests using all the available futures prices 

25 There are procedures for testing nonnested models. See, for example, Cox (1961, 1962), 
Atkinson (1970), Pesaran and Deaton (1978), and Davidson and MacKinnon (1981). These proce- 
dures, however, are not easily adapted to our framework. 
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Table XVIII 

Volatilities of Futures Returns Implied by Models 1, 2, and 3 

Oil Futures Copper Futures Enron Oil Forwards 

Zero Infinite Zero Infinite Zero Infinite 
Model Maturity Maturity Maturity Maturity Maturity Maturity 

1 0.257 0 0.233 0 0.129 0 
2 0.358 0.145 0.274 0.159 0.212 0.159 
3 0.344 0.146 0.266 0.166 0.196 0.166 

not used in the estimation of the parameters of the models. Recall that only 
five futures prices (and ten for the Enron data) were used to estimate the 
parameters of the models. The second were time series tests using the last 50 
observations in the sample. 

In the cross-section tests we used the parameters and the value of the state 
variables estimated over the whole sample period to price at every observation 
date all the futures contracts that were not used in the estimation. In some 
sense, this is an out-of-sample test because we are only pricing contracts not 
used in the estimation. The parameters used, however, have been estimated 
over the whole sample period so in strict sense only the last observation is truly 
out-of-sample. Also, prices of futures contracts are correlated. The procedure, 
anyhow, should give us an indication of the relative performance of the models. 
Tables XII, XIII, and XIV show the results for the long term oil, copper, and 
Enron oil data, respectively. For oil we had 12 futures prices not used in the 
estimation, but for copper we only had 4. For the Enron oil data we used 10 
forward prices not used in the estimation. We report the root mean square 
error and the mean error in monetary terms in Panel A of the tables and in 
percentage in Panel B for the contracts available and also for all the contracts 
together. Models 2 and 3 clearly outperform Model 1 in every dimension and 
for the three data sets. For example, for the oil data the RMSE is 2.7 percent 
for Model 1, whereas it is around 1 percent for Models 2 and 3. The relative 
performance of Models 2 and 3 is not so clear when we consider only the 
shorter maturity futures data, Model 2 outperforms Model 3 for oil, and 
vice-versa for copper. For the futures contracts also the copper data fit all the 
models better than the oil data. This is possibly due to the fact that the oil data 
period includes the Gulf War in August of 1990, which had a dramatic impact 
in the oil markets. For the longer maturity Enron oil data, however, Model 3 
appears as the clear winner: the RMSE is 4.1 percent for Model 1, 2.6 percent 
for Model 2, and 2.2 percent for Model 3. Note also that for this data, volatil- 
ities are smaller since it does not include the Gulf War period. 

A truly out-of-sample time series test of the models would compute the 
prediction errors for period t + 1 using all the information available up to 
period t. This would require the estimation of the new parameters of the model 
at every period t. Instead, we computed an upper and lower bound of these 
prediction errors in the following manner. First, we computed the prediction 
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Figure 9. (a) The figure shows the term structure of volatilities of oil futures returns and 
the term structure implied by the three models. (b) The figure shows the term structure 
of volatilities of copper futures returns and the term structure implied by the three 
models. (c) The figure shows the term structure of volatilities of oil futures returns and 
the term structure implied by the three models, using the parameters for the Enron oil 
data. 

errors for the last 50 observations of the sample using the parameters esti- 
mates for the whole sample period. This is a lower bound of the error, since we 
are using the last observations also to estimate the parameters. Second, we 
estimated the parameters over the period that did not include the last 50 
observations and used them to estimate the prediction errors for the last 50 
observations of the sample. This is an upper bound of the error since we did not 
update the parameters of the models as new data became known. Tables XV, 
XVI, and XVII present the results of these tests for oil, copper, and Enron oil 
data, respectively. Panel A of this table gives the root mean square errors and 
the mean errors of the log prices26 using the in-sample estimation of param- 
eters, whereas Panel B gives the same information but using the out-of-sample 
parameter estimates. The period over which the parameters are estimated 
does not make a significant difference in the results, justifying the procedure 
used. As before, Models 2 and 3 clearly outperform Model 1. Model 3 margin- 
ally outperforms Model 2 for the oil and copper data. In the out-of-sample 
parameter estimation, Model 3 outperforms Model 2 for the Enron oil data, but 
the reverse occurs for the in-sample parameter estimation. 

V. Volatility of Futures Returns 

When we use a model to value a financial or real asset contingent on a 
commodity price, we are interested in modeling not only the term structure of 
futures prices, but also the term structure of volatilities. Each model consid- 
ered has different implications for the term structure of the volatilities of 
commodity futures returns. One property that will be common to the three 
models is that volatilities will be independent of the state variables of each 
model and will only depend on time to maturity of the futures contracts. 

Applying Ito's Lemma to equation (7) we see that the term structure of 
proportional futures volatilities in Model 1 is given by 

(J2(T) = a2e-2KT (39) 

A feature of this model is that as the time to maturity of the futures contract 
approaches infinity, the volatility of its price converges to zero. 

26 The reason to deal with log prices comes from their use in the Kalman filter estimation. 
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Figure 10. (a) The figure shows the term structures of oil futures prices for 1/2/90 
implied by the three models for maturities up to ten years. (b) The figure shows the term 
structure of oil futures prices for 12/22/93 implied by the three models for maturities up 
to ten years. (c) The figure shows the term structure of oil futures prices for 2/17/95 
implied by the three models for maturities up to ten years. 

From equation (18) we can obtain the volatility of futures returns in Model 2: 

a2(T) = 
2 

+ 2 (1 e-KT) 2 (1 - e KT) 

F 1 U2~K 2 - Pcrlcr2 K (0 

When time to maturity approaches infinity, the volatility of futures returns in 
this model converges to: 

2 (oo) 2 + 
2 

- 
(41) 

Finally, the volatility in Model 3 can be obtained from equation (26): 

(12 - eKT)2 (1 - e-aT)2 (1 - e -KT) 
2 1K2 3 a2 K~21o 

+ 2P3v1v3 a - 2P2(T23 ( -aT)1 -KT) (42) a 3a 

When time to maturity approaches infinity this expression converges to: 

2 2 
2Pl1l2 2PUl30 2P103f 

aT 2 ( ) = 072 + 02 + (T3 2 p43p 
22 + 

a 

Figures 9a, 9b, and 9c plot the volatility of futures returns implied by the 
three models (using equations (39), (40), and (42)) for the Oil data, the Copper 
data, and the Enron oil data, respectively. The figures also show the actual 
volatility of futures returns of the contracts used in the estimation of the 
parameters of the models. It is surprising to see how well Models 2 and 3 fit the 
volatility of the data. It should be noted that only futures prices were used in 
the estimation; the volatility of futures returns is not an input in the estima- 
tion. The only volatility that enters into the estimation procedure is the 
volatility of the unobserved state variables. Finally, the figures show that 
Model 1 implies volatilities that are always smaller than the volatility of the 
data, with the difference being smaller for midmaturities and then increasing 
with increasing maturity of the futures contracts. 

Figures 9 also indicate that, for the data considered, Models 2 and 3 imply 
very similar futures volatilities. The reason for this is that the volatility of the 
interest rate process in Model 3 (see Table IX) is of an order of magnitude 
smaller than the volatilities of the other state variables (around 1/25). If we 
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Figure 11. (a) The figure shows the term structure of copper futures prices for 7/29/88 
implied by the three models for maturities up to ten years. (b) The figure shows the term 
structure of copper futures prices for 7/13/93 implied by the three models for maturities 
up to ten years. (c) The figure shows the term structure of copper futures prices for 
6/13/95 implied by the three models for maturities up to ten years. 

Table XIX 

Cross-Section Comparison Between Models 1, 2, and 3 Out-of-Sample 
Enron Oil Data 1/15/93 to 5/16/96 

RMSE in Dollars RMSE in Percentage 

Model 1 2 3 (7%) 3 (6%) 1 2 3 (7%) 3 (6%) 

2 Years 0.35 0.09 0.16 0.20 1.91 0.49 0.86 1.12 
3 Years 0.65 0.29 0.37 0.38 3.42 1.45 1.91 1.98 
5 Years 1.29 0.80 0.96 0.65 6.42 3.94 4.89 3.24 
7 Years 1.79 1.40 1.93 0.87 8.59 6.84 9.53 4.24 
9 Years 2.24 2.14 3.27 1.33 10.53 10.22 15.68 6.38 
All 1.44 1.20 1.76 0.79 6.95 5.81 8.54 3.85 

compare equation (42) with (40), we see that the volatility of futures returns in 
Model 3 converges to the one in Model 2 when the volatility of interest rates 
goes to zero. Table XVIII reports the limiting volatilities (when time to matu- 
rity is zero and infinity) for the three models. Note that for the three data sets 
the volatilities for Model 2 start at a higher level and end at a lower level than 
for Model 3. The crossover is barely observed in Figures 9. 

In summary, Model 1, which has very different implications about the 
volatility of futures returns as the maturity of the contract increases than 
Models 2 and 3, is incapable of describing the volatility of the futures data. 
Models 2 and 3 give similar implications because the volatility of the conve- 
nience yield overshadows the volatility of interest rates. This feature has 
important implications for valuation when the models are used in situations 
that involve longer term assets. 

VI. Long Maturity Futures Contracts 

The futures contracts available to estimate the parameters of the models 
discussed in this article have maximum maturities that are less than two 
years. Only the proprietary Enron oil forward curves have longer term matu- 
rities. It is of great interest to find out what are the implications of the models 
estimated with short maturity futures contracts with respect to longer term 
contracts, since many of the potential applications would involve assets with 
maturities longer than two years. In the previous section we examined the 
implications of the models with respect to volatility, and here we look at the 
implications with respect to price. 

Figures 10 and 11 show the futures prices implied by the models for con- 
tracts up to ten years to maturity for the same observations as in Figures 6 
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and 7, respectively. Here we observe that even though Models 2 and 3 give very 
similar values in the range of observed contracts, they can diverge substan- 
tially as maturity increases. As mentioned in Section IV.D (see equation (38)), 
in Model 1 the futures price converges to a fixed value, so the rate of change in 
price as maturity increases converges to zero. For the estimated parameters in 
Models 2 and 3, however, even if initially the term structure of futures prices 
is decreasing, it eventually turns upward. In Models 2 and 3, the rate of change 
in price as maturity increases can easily be obtained by taking the derivative 
of the futures price with respect to time to maturity, dividing by the price, and 
taking the limit when time to maturity goes to infinity. For both models this 
"forward cost of carry"27 converges to a rate that is independent of the initial 
value of the state variables. In Model 2 this rate is 

l aF 2.2 P91072 - a-T ( T -> 00) = r - 'a + 2 
-2- (44) F aT(T r? K2 K 

which translates, given the estimated parameters, into 2.71 percent per year 
for oil futures and 0.85 percent per year for copper futures. The corresponding 
rate in Model 3 is 

1 aF ~ ~ ~~~~~2 2 1laF A (72 P1071U2 073 P3CrU1J3 P2Ur2JT3 

FdT (T >)m a+ 2 + 2a2+ a Ka5) 

which gives substantially higher values, 4.19 percent per year for oil futures 
and 2.70 percent per year for copper futures. This difference of 1.48 percent per 
year for oil futures and 1.95 percent per year for copper futures can make a big 
difference for futures prices with ten years to maturity, as can be observed in 
the figures. 

The infinite maturity discount bond yield assumed in Model 3 has significant 
impact on the value to which the forward cost of carry converges. If the model 
is reestimated with an infinite maturity discount yield of 6 percent instead of 
7 percent, there is practically no change in the estimated parameters, but the 
forward cost of carry converges to 3.56 percent for oil (instead of 4.19 percent) 
and 2.00 percent for copper (instead of 2.70 percent). These values are still 
higher, but much closer to those in Model 2. 

Even when the models are estimated with the longer term Enron oil data, 
the forward cost of carry converges to a higher value in Model 3 (3.38 percent 
per year) than in Model 2 (2.25 percent per year). When Model 3 is reestimated 
assuming an infinite maturity discount bond yield of 6 percent instead of 7 
percent, the obtained value of 3.03 percent per year is closer to the one in 
Model 2. 

To give some insight into the performance of the models on longer term data 
when they are estimated on short term data, we estimate the parameters of the 
three models using the first five forward prices of the Enron oil data with 
maturities of 2 months to 1.5 years and then analyze how well they price the 

27 See Cortazar and Schwartz (1994). 
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last five forward contracts with maturities of 2 to 9 years. Table XIX reports 
the root mean square error (RMSE), both in dollars and in percentage, for 
Models 1, 2, and two versions of Model 3, one assuming a 7 percent infinite 
maturity discount bond yield and the other a 6 percent. The table shows that 
Model 2 always outperforms Model 1, with a RMSE on all contracts of 5.8 
percent versus 7 percent. Model 3 performs the best when a 6 percent infinite 
maturity discount bond yield is assumed (with a RMSE on all contracts of 3.9 
percent), but performs the worst when a 7 percent infinite maturity discount 
yield is assumed (with a RMSE on all contracts of 8.5 percent). This confirms 
the importance of the interest rate process parameters in Model 3 for the 
valuation of long term contracts. The main difference between Models 2 and 3 
remains the valuation of long term futures contracts. 

VII. Hedging Contracts for Future Delivery 

An issue that has received increased attention in the literature28 is the 
feasibility of hedging long term forward commitments in commodities with the 
existing short term futures contracts. The three models discussed in this 
article have implications for hedging strategies, which we now briefly discuss. 

To properly hedge a forward commitment in a particular commodity, the 
sensitivity of the present value of the commitment with respect to each one of 
the underlying factors must equal the sensitivity of the portfolio of futures 
contracts used to hedge the commitment with respect to the same factors. This 
implies that the number of futures contracts required for the hedge is equal to 
the number of factors in the model used. Since Models 1 and 2 assume constant 
interest rates, and therefore futures prices are equal to forward prices, the 
present value of the forward commitment per unit of the commodity can simply 
be obtained by discounting the future (forward) price in equations (7) and 
(18).29 For Model 3 the present value of a forward commitment, P(S, 8, r, T), is 
given in equation (30). 

The number of long positions wi in future contract with maturity ti required 
to hedge a forward commitment to deliver one unit of a commodity at time T is 
then obtained in each one of the models by solving the following system of 
equations: 
Model 1 (from equation (7)): 

w,Fs(S, tl) = e-rT Fs(S, T). (46) 

Model 2 (from equation (18)): 

w,Fs(S, 6, tl) + w2FS(S, 6, t2) = e-rTFs(S, 8, T) 

w,F5(S, 8, ti) + w2Fs(S, 8, t2) = e-rTFs(S, 8, T). (47) 

28 See for example Brennan and Crew (1995), Culp and Miller (1994, 1995), Edwards and 
Canter (1995), and Ross (1995). 

29 Note that for Model 2 this present value is independent of the interest rate r. 
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Model 3 (from equations (26) and (30)):30 

w,Fs(S, 6, r, tl) + w2FS(S, 6, r, t2) + w3Fs(S, 8, r, t3) = PS(S, 6, r, T) 

w,F,(S, 6, r, tl) + w2F8(S, 8, r, t2) + w3F8(S, 8, r, t3) = PA(S, 6, r, T) 

wiFr(S, 6, r, tl) + w2Fr(S, 8, r, t2) + w3Fr(S, 86 r, t3) = Pr(S, 6, r, T). 

(48) 

Note that in Models 2 and 3 the hedge ratios wi are independent of the spot 
price S. 

Figure 12 illustrates the positions required to hedge a ten-year forward 
commitment to deliver one barrel of oil implied by the three models, using the 
parameter estimates from the Enron data. Panel A presents the number of 
one-month oil futures contracts required in Model 1 as a function of the spot 
price. Due to the strong mean reversion implied by this model, the hedging 
positions are unreasonably low. For example, for a spot price of $20 the hedge 
ratio is only 0.25. Panel B shows the number of one-month futures contracts 
short and the number of one-year futures contract long required in Model 2 to 
hedge the ten-year oil forward commitment as a function of the convenience 
yield. Even though the hedge ratios do not depend on the spot price we need 
two futures contracts to hedge the two risk factors in the model.31 For example, 
for a convenience yield of 0.10, the hedge ratios are 1.09 long in the one-year 
contract and 0.34 short in the one-month contract. Finally, Panel C displays 
the number of six-month futures contracts long (top surface), one month 
futures contracts short (bottom surface), and one-year unit discount bonds long 
(middle surface) required in Model 3 as a function of the convenience yield and 
the instantaneous interest rate. For example, for a convenience yield of 0.10 
and an interest rate of 0.05, the hedge ratios are 1.96 long in the six-month 
contract, 1.29 short in the one-month contract, and 0.94 long in the one-year 
discount bond. In this case we take positions in the discount bond to hedge 
against changes in interest rates. Note that in this model, as well and in Model 
2, the hedge ratios are not very sensitive to the factors. 

VIII. Investment under Uncertainty 

The stochastic behavior of commodity prices has important implications for 
the valuation of projects related to the prices of those commodities (mines, oil 
deposits) and for the determination of the optimal investment rule, i.e., the 
commodity price above which it is optimal to undertake the project immedi- 
ately. In this section we analyze a simple investment project and evaluate it 
using the three models developed in this article and two other benchmark 
procedures. The first benchmark is the traditional discounted cash flow (DCF) 
criteria and the second is a real option approach based on the assumption that 

30 Note that in this model the interest risk could be hedged using a bond instead of a third 
futures contract. This is what we do in the illustration that follows. 

31 The results here are very similar to those presented for oil in Brennan and Crew (1995). 
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HEDGING TEN YEAR OIL FORWARD COMMITMENTS WITH FUTURES 
CONTRACTS 
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C. Model 3: 1 and 6 month fuetures and 1 year discount bond 

Figure 12. (a) The figure shows the number of one-month oil futures contracts required 
inl Model 1 to hedge a ten-year forward comitment to deliver one barrel of oil, as a 
function of the current spot price. (b) The figure shows the number of one-month and 
one-year oil futures contracts required in Model 2 to hedge a ten-year forward commit- 
ment to deliver one barrel of oil, as a function of the current instantaneous convenience 
yield. (c) The f igure shows the number of one-month and six-month oil futures contracts 
and one-year unit discount bonds required in Model 3 to hedge a five-year forward 
commitment to deliver one barrel of oil, as a function of the current instantaneous 
interest rate and convenience yield. 



966 The Journal of Finance 

commodity prices follow a geometric random walk, that is, neglecting mean 
reversion. 

The objective of this section is to show that different methods of analysis can 
give quite different values for an investment project and for the optimal 
investment rule, even if the assumptions made in each methodology are as 
realistic as possible. To be able to judge which methodology is superior, 
however, we would need to apply them to situations in which we have valid 
transaction prices. The conclusion to a recent article in the Engineering and 
Mining Journal on the capital budgeting methods used by mining companies 
directly addresses the issue we want to raise: 

The use of DCF techniques to project valuations appears to be the indus- 
try standard. One disturbing result of the study, however, is the inability to 
explain the high premium that market values command over DCF valua- 
tions. The well known and used DCF analysis does not allow for placing 
premium values on projects under consideration. Perhaps the newer tech- 
niques such as option pricing methods of valuation may provide more 
accurate market value results (Bhappu and Guzman (1995), page 38). 

We want to analyze a project as simply as possible, but that retains the main 
features that we want to highlight. Consider a copper mine that can produce 
one ounce of copper at the end of each year for ten years. Suppose that the 
initial investment required is K = $2 and that the unit cost of production is C = 
$0.40 (constant for the ten years). Assume that once the investment is done 
production will go ahead for the following ten years; that is, we neglect in this 
analysis the options to close and open the mine and the option to abandon it,32 
and concentrate entirely on the option to invest. The first step in all the 
procedures we will discuss consists in the determination of the net present 
value of the project once it has been decided to go ahead with the investment 
(this is the "boundary condition" of the second step), and the second step 
consists in the evaluation of the option to invest. The net present value of the 
project once the investment has been decided is 

10 10 

NPV= E P(r, T, )-C E B(r, T) - K (49) 
T=1 T=1 

where P(r, T, ) is the present value of the commodity to be received at time T 
when the interest rate is r (it also depends on the specific factors of a particular 
model), and similarly B(r, T) is the present value of $1 (which is equal to 
exp(-rT) when the interest rate is constant). It is important to note that the 
net present value (NPV) in equation (49) will be different for the different 
approaches since each one of them implies a different present value for the 

32 For a detailed discussion of these options see Brennan and Schwartz (1985). Since the 
procedures to evaluate the mine are numerical, it would be trivial to incorporate them in the 
analysis. We have chosen to leave them out to simplify the analysis and presentation. 
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Table XX 

Investment Criteria and Project Value in Mine Example 

Row Model 8 r NPV= 0 S* SI = 0.50 S2 = 1.00 S3 = 1.50 

1 DCF ** 0.10 0.73 0.73 -1.40 1.61* 4.61* 
2 DCF ** 0.12 0.76 0.76 -1.45 1.29* 4.03* 
3 DCF ** 0.15 0.82 0.82 -1.52 0.88* 3.28* 
4 Model 0 0.118 0.06 0.89 1.30 0.11 0.99 3.38* 
5 Model 1 ** 0.06 0.26 0.97 1.23 1.75* 2.52* 
6 Model 2 0.10 0.06 0.70 1.12 0.27 2.38 5.94* 
7 Model 2 0.25 0.06 0.80 1.20 0.16 1.68 4.68* 
8 Model 2 0.40 0.06 0.90 1.32 0.09 1.15 3.58* 
9 Model 3 0.10 0.03 0.69 0.96 0.19 2.29* 5.99* 

10 Model 3 0.25 0.03 0.79 1.10 0.17 1.42 4.60* 
11 Model 3 0.40 0.03 0.90 1.24 0.15 0.83 3.38* 
12 Model 3 0.10 0.06 0.66 1.02 0.25 2.55 6.25* 
13 Model 3 0.25 0.06 0.75 1.14 0.21 1.69 4.86* 
14 Model 3 0.40 0.06 0.86 1.26 0.18 1.05 3.64* 
15 Model 3 0.10 0.09 0.62 1.18 0.32 2.81 6.48* 
16 Model 3 0.25 0.09 0.71 1.24 0.27 1.96 5.09* 
17 Model 3 0.40 0.09 0.82 1.36 0.23 1.29 3.87* 

* For copper spot prices above S* it is optimal to invest immediately. 
** This model does not use the convenience yield. 
DCF = Discounted Cash Flow. 

commodity to be received sometime in the future (and also for the interest rate 
in Model 3). 

We will first evaluate our simple project using the traditional DCF criteria 
and the constant convenience yield model of Brennan and Schwartz (1985). 
Then, we will evaluate it using the three models developed and estimated in 
this article. All the results are reported in Table XX, which gives the copper 
spot price above which it is optimal to invest, S*, the value of the project for 
copper spot prices of S1 = $0.50, S2 = $1.00, and S3 = $1.50, and the copper 
spot price at which the net present value of the project is zero (NPV = 0). 

A. Discounted Cash Flow Criteria 

In this approach the expected net cash flows are discounted at a rate that 
reflects the risk of these cash flows, so we need to specify the discount rate and 
the expected future copper spot prices for the next ten years. In practice, it is 
common to assume that spot prices will remain constant or use some industry 
prediction of future spot prices, and use discount rates that vary between 0.10 
and 0.15.3 In rows 1, 2, and 3 we report the results using risk-adjusted 
discount rates of 0.10, 0.12 and 0.15 respectively, and a flat copper spot price. 

3 Moyen, Slade, and Uppal (1996) report that most firms use a long-run commodity price, that 
there is a substantial agreement concerning this price, and that the most common hurdle rate used 
is fifteen percent. 
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At a discount rate of 0.12 the net present value is zero for a copper price of 
$0.76 and the value of the mine is $1.29 for a copper price of $1.00. Note that 
the value of the project is very sensitive to the discount rate used, almost 
doubling from $0.88 for a discount rate of 0.15 to $1.61, for a discount rate of 
0.10. There is always a discount rate that gives the same value as the other 
approaches discussed below, but as we shall see, all option-based methods give 
spot prices above which it is optimal to invest significantly higher than in the 
discounted cash flow criteria. The assumption of constant copper spot prices is 
also quite arbitrary; small deviations from this assumption can give very 
different project values. 

B. Constant Convenience Yield: Model 0 

In the methods that use the real options approach to valuation, instead of 
discounting expected cash flows at a risk-adjusted discount rate, certainty 
equivalent cash flows are discounted at the risk-free interest rate. For com- 
modities this certainty equivalent cash flow is related to the forward price of 
the underlying commodity, which is equal to the futures price if the interest 
rate is constant. The different models make different assumptions about the 
stochastic behavior of commodity prices and therefore imply a different valu- 
ation of forward and futures contracts. 

In the constant convenience yield model, which we shall call Model 0, the 
risk-adjusted process for the spot commodity price is assumed to follow a 
geometric Brownian motion: 

dS 
S = (r - c)dt + odz* (50) 

where we use c for the convenience yield to distinguish it from 8 used in the 
stochastic convenience yield models. In this model the net present value (49) 
becomes: 

10 10 

NPV(S) =S e-cT-C e-rT- K=So (51) 
T=1 T=1 

and the option to invest, V(S), satisfies the ordinary differential equation: 

1/2ou2S2Vss + (r - c)SVs - rV = 0 (52) 

subject to the boundary condition: 

V(S) ? max[S3l- 12, 0] (53) 
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The solution to this equation is 

V(S) = (S*pi - I2)( S*) 

where 

S*- 02d 
* 1(d- 1) 

1 r-c ( r-C\2 2r 
d= 2 2 + 2 2 ) + f2. (54) 

S* is the commodity price above which it is optimal to invest in the project. 
Row 4 of Table XX shows the results for Model 0. The future contract closest 

to maturity (F1) is used as a proxy for the spot to compute the standard 
deviation of the return on the spot copper price (v = 0.266) and the convenience 
yield is computed as the average of the weekly convenience yields calculated 
from the first (F1) and last (Fg) futures contract assuming an interest rate of 
0.06 (c = 0.118). The critical copper price is $1.30, which is, as expected, 
substantially higher than those obtained using the DCF criteria, and the value 
of the option to invest when the price of copper is $1.00 is $0.99; only for a 
discount rate of 0.15 does the discounted cash flow criteria give a lower value 
of the project at this price. The reason for this is that with the estimated 
convenience yield for this period of approximately 0.12 and an interest rate of 
0.06, the risk-adjusted drift is close to -0.06, which implies that the term 
structure of futures prices is declining at a rate of 6 percent per year.34 

C. Mean Reverting Spot Price: Model 1 

The net present value in Model 1 is obtained from equation (49) by discount- 
ing the futures (or forward) prices as given by equation (7). To obtain the value 
of the investment option, V(S), we need to solve a partial differential equation 
(PDE) identical to equation (9), except that in the right hand side we have rV 
instead of zero (also, if the investment option has infinite maturity the partial 
derivative with respect to time to maturity disappears). The boundary condi- 
tion is the maximum of the net present value for this case and zero. 

The PDE is solved by numerical methods and the results using the estimated 
parameters from Table 5 are reported in Row 5 of Table XX.35 Since in this 
model futures prices converge to $0.88 with zero volatility whatever the initial 
copper spot price, the value of the project is less sensitive to the spot price than 

34 A more typical long term convenience yield is 0.06. The example, however, shows the high 
variability of the convenience yield and its significant impact on valuation. 

3 For the three cases that involved the numerical solution of the PDE, we assumed that the 
investment option had a maturity of ten years. 
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any of the other methods discussed and the net present value becomes negative 
only when the spot price is below $0.26, the lowest of any other case consid- 
ered. In spite of this the critical spot price is quite high at $0.97 since the spot 
price has a relatively high volatility. 

D. Stochastic Convenience Yield: Model 2 

For this model the NPV in equation (49) depends both on the spot price and 
the convenience yield, and the present value of one unit of the commodity is 
obtained by discounting the future (or forward) price given in equation (18). 
The value of the option to invest, V(S, 8), satisfies a PDE identical to (17), 
except that the right-hand side is rV instead of zero. 

The corresponding PDE is solved numerically for the estimated parameters 
in Table VII and the results are given in Rows 6, 7, and 8 of Table XX for 
instantaneous convenience yields of 0.10 (a low convenience yield), 0.25 (an 
average convenience yield),36 and 0.40 (a high convenience yield), respectively. 
Since the convenience yield is highly correlated with the spot price and 
strongly mean reverting, a low convenience yield indicates that spot prices will 
tend to go up, so the commodity spot price above which it is optimal to invest 
is lower and the value of the option to invest higher than when the convenience 
yield is high, which indicates that spot prices will tend to go down. For 
comparison with the other models is best to focus on the case with average 
convenience yield: the critical spot price of $1.20 is lower than in Model 0, 
where mean reversion is neglected but higher than Model 1, where mean 
reversion seems to be too strong for longer maturities. 

E. Stochastic Convenience Yield and Interest Rates: Model 3 

In Model 3 the NPV of the project equation (49) depends also on the interest 
rate, in addition to the spot price of the commodity and the convenience yield. 
The present value of a unit of the commodity deliverable at time T must be 
computed using equation (30) since now forward prices are not equal to futures 
prices, and the present value of a unit discount bond must be computed using 
equation (29). The value of the option to invest, V(S, 8, r), satisfies a PDE 
identical to (25) except that the right hand side is rV instead of zero. 

The PDE is solved by numerical methods for the estimated parameters in 
Table X and the results are reported in Rows 9 to 17 of Table XX for three 
different values of the convenience yield (0.10, 0.25, and 0.40) and three 
different interest rates (0.03, 0.06, and 0.09). Copper spot prices that trigger 
investment and the value of the investment option are very sensitive to the 
initial value of the convenience yield and interest rate. Note that for an initial 
convenience yield of 0.25 and an interest rate of 0.06 the copper spot price that 
triggers investment is lower than in Model 2 ($1.14 versus $1.20) but the value 

36 The reason this average convenience yield is much larger than the one used in Model 0 is that 
the former is an instantaneous convenience yield, whereas the latter is a convenience yield 
obtained between the first and last future contracts available. 
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Figure 13. The figure shows the net present value of a simple copper project, assuming 
that the investment is immediately undertaken, implied by the three models and two 
benchmarks: the discounted cash flow criteria and an option model that assumes 
constant convenience yield (Model 0), for different copper spot prices. 

of the investment option is very similar when the spot copper price is $1.00 
($1.69 versus $1.68). 

F. Discussion 

To be able to compare the investment implications of the different models we 
will concentrate the discussion of Model 2, assuming an average initial conve- 
nience yield (Row 7 of Table XX) and of Model 3, assuming an average initial 
convenience yield and interest rate (Row 13 of Table XX). For the DCF criteria 
we will assume a risk adjusted discount rate of 0. 12 (Row 2 of Table XX). 
Figure 13 shows, for the different models considered, the net present value of 
the project once the investment has been decided. The investment will actually 
be undertaken, however, only when this value is positive for the DCF criteria, 
or when the investment option is optimally exercised in the other (option) 
models; this value, then, represents the boundary condition for the investment 
option problem. From equation (49) and the formulas for forward prices it is 
easy to see that in every case, with the exception of Model 1, the investment 
value is a linear function of the spot price. The strong mean reversion to a fixed 
price makes the investment value in Model 1 very insensitive to the spot price. 
The other models give similar values for low spot prices, but their values 
diverge when the spot price increases, Model 3 giving the highest value, 
followed by Model 2, the NPV criteria, and finally Model 0. The valuation 
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results for Models 1, 2, and 3 are consistent with the long term futures prices 
shown in Figure 11. 

When the option element of the investment is considered, the values ob- 
tained under the different models will be nonlinear functions of the spot price 
(and also of the other factors in the particular model) and the investment rule 
will be determined by the optimal exercise of the option. From Table XX we 
observe that the NPV criteria give the lowest copper spot price above which it 
is optimal to invest and Model 0, which does not consider mean reversion, gives 
the highest. The three models discussed in this article, which take into account 
mean reversion, give intermediate copper prices that trigger investment ($0.97 
for Model 1, $1.20 for Model 2, and $1.14 for Model 3). 

IX. Conclusion 

The pricing and hedging of commodity contingent claims and the valuation 
of natural resource investments depend critically on the assumed stochastic 
process of the underlying commodity. In this article we develop three models 
that in different ways take into account the mean reverting nature of com- 
modity prices, and estimate them using recent data on oil and copper futures 
prices. 

The major difficulty we encounter in the analysis is that publicly available 
futures contracts have maturities shorter than two years, whereas many of the 
assets we wish to price and hedge have maturities much longer than two years. 
A particular model could fit very well the available short term futures con- 
tracts and do a poor job in predicting longer term futures prices that are 
essential for hedging long term commitments in the commodity or valuing 
mines or oil deposits. The proprietary oil data provided by Enron has allowed 
us to gain some insight into this issue. 

Each one of models we consider has implications with respect to the volatil- 
ity of futures returns and with respect to the behavior of long term futures 
prices. Model 1 implies that the volatility of futures returns will converge to 
zero and futures prices will converge to a fixed value as maturity increases. 
Models 2 and 3, however, for the estimated data imply that futures volatility 
will decrease but converge to a fixed value different from zero and the term 
structure of futures prices will eventually turn upward and converge to a fixed 
rate of growth even if initially is in strong backwardation. The evidence from 
the Enron oil forward curves imply that these properties are more desirable. 

The real options approach to capital budgeting is gaining support both in the 
academic community and in the practice of finance. The analysis in this article 
suggests that it is very important to consider mean reversion in prices in 
evaluating projects. The DCF criteria induces investment too early (i.e., when 
prices are too low), but the real options approach induces investment too late 
(i.e., when prices are too high) when it neglects mean reversion in prices. 
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