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Econometrica, Vol. 53, No. 2 (March, 1985) 

A THEORY OF THE TERM STRUCTURE OF 
INTEREST RATES1 

BY JOHN C. COX, JONATHAN E. INGERSOLL, JR., AND 

STEPHEN A. Ross 

This paper uses an intertemporal general equilibrium asset pricing model to study the 
term structure of interest rates. In this model, anticipations, risk aversion, investment 
alternatives, and preferences about the timing of consumption all play a role in determining 
bond prices. Many of the factors traditionally mentioned as influencing the term structure 
are thus included in a way which is fully consistent with maximizing behavior and rational 
expectations. The model leads to specific formulas for bond prices which are well suited 
for empirical testing. 

1. INTRODUCTION 

THE TERM STRUCTURE of interest rates measures the relationship among the 
yields on default-free securities that differ only in their term to maturity. The 
determinants of this relationship have long been a topic of concern for economists. 
By offering a complete schedule of interest rates across time, the term structure 
embodies the market's anticipations of future events. An explanation of the term 
structure gives us a way to extract this information and to predict how changes 
in the underlying variables will affect the yield curve. 

In a world of certainty, equilibrium forward rates must coincide with future 
spot rates, but when uncertainty about future rates is introduced the analysis 
becomes much more complex. By and large, previous theories of the term structure 
have taken the certainty model as their starting point and have proceeded by 
examining stochastic generalizations of the certainty equilibrium relationships. 
The literature in the area is voluminous, and a comprehensive survey would 
warrant a paper in itself. It is common, however, to identify much of the previous 
work in the area as belonging to one of four strands of thought. 

First, there are various versions of the expectations hypothesis. These place 
predominant emphasis on the expected values of future spot rates or holding- 
period returns. In its simplest form, the expectations hypothesis postulates that 
bonds are priced so that the implied forward rates are equal to the expected spot 
rates. Generally, this approach is characterized by the following propositions: 
(a) the return on holding a long-term bond to maturity is equal to the expected 
return on repeated investment in a series of the short-term bonds, or (b) the 
expected rate of return over the next holding period is the same for bonds of all 
maturities. 

The liquidity preference hypothesis, advanced by Hicks [16], concurs with the 
importance of expected future spot rates, but places more weight on the effects 
of the risk preferences of market participants. It asserts that risk aversion will 
cause forward rates to be systematically greater than expected spot rates, usually 

' This paper is an extended version of the second half of an earlier working paper with the same 
title. We are grateful for the helpful comments and suggestions of many of our colleagues, both at 
our own institutions and others. This research was partially supported by the Dean Witter Foundation, 
the Center for Research in Security Prices, and the National Science Foundation. 
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by an amount increasing with maturity. This term premium is the increment 
required to induce investors to hold longer-term ("riskier") securities. 

Third, there is the market segmentation hypothesis of Culbertson [7] and others, 
which offers a different explanation of term premiums. Here it is asserted that 
individuals have strong maturity preferences and that bonds of different maturities 
trade in separate and distinct markets. The demand and supply of bonds of a 
particular maturity are supposedly little affected by the prices of bonds of 
neighboring maturities. Of course, there is now no reason for the term premiums 
to be positive or to be increasing functions of maturity. Without attempting a 
detailed critique of this position, it is clear that there is a limit to how far one 
can go in maintaining that bonds of close maturities will not be close substitutes. 
The possibility of substitution is an important part of the theory which we develop. 

In their preferred habitat theory, Modigliani and Sutch [25] use some arguments 
similar to those of the market segmentation theory. However, they recognize its 
limitations and combine it with aspects of the other theories. They intended their 
approach as a plausible rationale for term premiums which does not restrict them 
in sign or monotonicity, rather than as a necessary causal explanation.2 

While the focus of such modern and eclectic analyses of the term structure on 
explaining and testing the term premiums is desirable, there are two difficulties 
with this approach. First, we need a better understanding of the determinants of 
the term premiums. The previous theories are basically only hypotheses which 
say little more than that forward rates should or need not equal expected spot 
rates. Second, all of the theories are couched in ex ante terms and they must be 
linked with ex post realizations to be testable. 

The attempts to deal with these two elements constitute the fourth strand of 
work on the term structure. Roll [29, 30], for example, has built and tested a 
mean-variance model which treated bonds symmetrically with other assets and 
used a condition of market efficiency to relate ex ante and ex post concepts.3 If 
rationality requires that ex post realizations not differ systematically from ex ante 
views, then statistical tests can be made on ex ante propositions by usino ex post 
data. 

We consider the problem of determining the term structure as being a problem 
in general equilibrium theory, and our approach contains elements of all of the 
previous theories. Anticipations of future events are important, as are risk prefer- 
ences and the characteristics of other investment alternatives. Also, individuals 
can have specific preferences about the timing of their consumption, and thus 
have, in that sense, a preferred habitat. Our model thus permits detailed predic- 
tions about how changes in a wide range of underlying variables will affect the 
term structure. 

2 We thank Franco Modigliani for mentioning this point. 
3 Stiglitz [35] emphasizes the portfolio theory aspects involved with bonds of different maturities, 

as do Dieffenbach [9], Long [18], and Rubinstein [31], who incorporate the characteristics of other 
assets as well. Modigliani and Shiller [24] and Sargent [33] have stressed the importance of rational 
anticipations. 
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The plan of our paper is as follows. Section 2 summarizes the equilibrium 
model developed in Cox, Ingersoll, and Ross [6] and specializes it for studying 
the term structure. In Section 3, we derive and analyze a model which leads to 
a single factor description of the term structure. Section 4 shows how this model 
can be applied to other related securities such as options on bonds. In Section 
5, we compare our general equilibrium approach with an alternative approach 
based purely on arbitrage. In Section 6, we consider some more general term 
structure models and show how the market prices of bonds can be used as 
instrumental variables in empirical tests of the theory. Section 7 presents some 
models which include the effects of random inflation. In Section 8, we give some 
brief concluding comments. 

2. THE UNDERLYING EQUILIBRIUM MODEL 

In this section, we briefly review and specialize the general equilibrium model 
of Cox, Ingersoll, and Ross [6]. The model is a complete intertemporal description 
of a continuous time competitive economy. We recall that in this economy there 
is a single good and all values are measured in terms of units of this good. 
Production opportunities consist of a set of n linear activities. The vector of 
expected rates of return on these activities is a, and the covariance matrix of the 
rates of return is GG'. The components of a and G are functions of a k- 
dimensional vector Y which represents the state of the technology and is itself 
changing randomly over time. The development of Y thus determines the produc- 
tion opportunities that will be available to the economy in the future. The vector 
of expected changes in Y is ,u and the covariance matrix of the changes is SS'. 

The economy is composed of identical individuals, each of whom seeks to 
maximize an objective function of the form 

rt' 

(1) E U(C(s), Y(s), s) ds, 
t 

where C(s) is the consumption flow at time s, U is a Von Neumann-Morgenstern 
utility function, and t' is the terminal date. In performing this maximization, 
each individual chooses his optimal consumption C*, the optimal proportion a* 
of wealth W to be invested in each of the production processes, and the optimal 
proportion b* of wealth to be invested in each of the contingent claims. These 
contingent claims are endogenously created securities whose payoffs are functions 
of W and Y. The remaininrg wealth to be invested in borrowing or lending at the 
interest rate r is then determined by the budget constraint. The indirect utility 
function J is determined by the solution to the maximization problem. 

In equilibrium in this homogeneous society, the interest rate and the expected 
rates of return on the contingent claims must adjust until all wealth is invested in 
the physical production processes. This investment can be done either directly 
by individuals or indirectly by firms. Consequently, the equilibrium value of J 
is given by the solution to a planning problem with only the physical production 
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processes available. For future reference, we note that the optimality conditions 
for the proportions invested will then have the form 

(2) --a WJw + GG'a*W2Jww +GS'WJwy - A *1 

and a*'T = 0, where subscripts on J denote partial derivatives, Jwy is a (k x 1) 
vector whose ith element is JwY,, 1 is a (k x 1) unit vector, and A* is a Lagrangian 
multiplier. With J explicitly determined, the similar optimality conditions for the 
problem with contingent claims and borrowing and lending can be combined 
with the market clearing conditions to give the equilibrium interest rate and 
expected rates of return on contingent claims. 

We now cite two principal results from [6] which we will need frequently in 
this paper. First, the equilibrium interest rate can be written explicitly as 

(3) r( W Y, t) = = aA*a + a*lGG'a* w w + aG __ 
a 1 + a GG a, W( J-) , , WYJw \ Jw / 

w -J Wvar W\_ /-J^Vcov W- YJw 
a Jw ) i (Jw W ) 

where (cov W, Yi) is the covariance of the changes in optimally invested wealth 
with the changes in the state variable Yi, with (var W) and (cov Yi, Yj) defined 
in an analogous way; note that a*'a is the expected rate of return on optimally 
invested wealth. Second, the equilibrium value of any contingent claim, F, must 
satisfy the following differential equation: 

(4) la*'GG'a* W2FW + a'GS'WFy + tr (SS'Fyy) 

+ (a*'aW- C*)Fw + uFy + Ft + -rF 

= 6wFw + yFy, 

where 8(W, Y, t) is the payout flow received by the security and 

(5) Sw = (a*'a - r) W, 

- (Jww )a* S'W+( Y)'SS' 
\ Jw / \ Jw 

In (4) subscripts on F denote partial derivatives; Fy and Fwv are (k x 1) vectors 
and Fyy is a (k x k) matrix. The left hand side of (4) gives the excess expected 
return on the security over and above the risk free return, while the right hand 
side gives the risk premium that the security must command in equilibrium. For 
future reference, we note that (4) can be written in the alternative form: 

k k k 

(6) ½(var W)Fww+ E (co W, Yi)Fwwy, + (cov Y, Yj)Fyyj 
i= 1 i= 1j=1 

k 
1 -Jww +[rW -C*]Fw±+ E H-( )(cov W, Yi) 

=1 \ Jw / 

- ( )(cov Yi, Yj) Fy +Ft-rF+ =O. 
j=l Jw / 

388 
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To apply these formulas to the problem of the term structure of interest rates, 
we specialize the preference structure first to the case of constant relative risk 
aversion utility functions and then further to the logarithmic utility function. In 
particular, we let U(C(s), Y(s), s) be independent of the state variable Y and 
have the form 

(7) U(C(s), s) e -Ps[C(s) 11 

where p is a constant discount factor. 
It is easy to show that in this case the indirect utility function takes the form:4 

(8) J(W, Y, t)=f(Y, t)U(W, t)+g(Y, t). 

This special form brings about two important simplifications. First, the coefficient 
of relative risk aversion of the indirect utility function is constant, independent 
of both wealth and the state variables: 

(9) WjWW 1 Y. 
Jw 

Second, the elasticity of the marginal utility of wealth with respect to each of 
the state variables does not depend on wealth, and we have 

(10) Jvw -fy 
Jw f 

Furthermore, it is straightforward to verify that the optimal portfolio proportions 
a* will depend on Y but not on W. Consequently, the vector of factor risk 
premiums, Oy reduces to (1 - y)a*'GS'+ (fy/f)SS', which depends only on Y 
In addition, it can be seen from (3) that the equilibrium interest rate also depends 
only on Y 

The logarithmic utility function corresponds to the special case of y = 0. For 
this case, it can be shown thatf(Y, t) = [l -exp [-p(t'- t)]]/p. The state-depen- 
dence of the indirect utility function thus enters only through g( Y, t). As a result, 
4y reduces further to a*'GS. In addition, the particular form of the indirect 
utility function allows us to solve (2) explicitly for a* as 

( 1 ) a* = ( GG')-1 a + 
I - 

1 (GG )' )(GG,)-l I 

when all production processes are active, with an analogous solution holding 
when some processes are inactive. 

In the remainder of the paper, we will be valuing securities whose contractual 
terms do not depend explicitly on wealth. Since with constant relative risk aversion 
neither the interest rate r nor the factor risk premiums dy depend on wealth, 
for such securities the partial derivatives Fw, FWW, and F,W are all equal to zero 
and the corresponding terms drop out of the valuation equation (4). 

4This type of separability has been shown in other contexts by Hakansson [15], Merton [22], and 
Samuelson [32]. 
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By combining these specializations, we find that the valuation equation (4) 
then reduces to 

(12) tr (SS-Fyy )+[A'a*GS']Fy+F,+ -rF=O. 

Equation (12) will be the central valuation equation for this paper. We will use 
it together with various specifications about technological change to examine the 
implied term structure of interest rates. 

3. A SINGLE FACTOR MODEL OF THE TERM STRUCTURE 

In our first model of the term structure of interest rates, we assume that the 
state of technology can be represented by a single sufficient statistic or state 
variable. This is our most basic model, and we will examine it in some detail. 
This will serve to illustrate how a similarly detailed analysis can be conducted 
for the more complicated models that follow in Sections 5 and 6. 

We make the following assumptions: 

AssUMPrION 1: The change in production opportunities over time is described 
by a single state variable, Y(= Y1). 

ASSUMPTION 2: The means and variances of the rates of return on the production 
processes are proportional to Y5 In this way, neither the means nor the variances 
will dominate the portfolio decision for large values of Y. The state variable Y can 
be thought of as determining the rate of evolution of the capital stock in the following 
sense. If we compare a situation where Y= Y, a constant, with a situation in which 
Y =2 Y, then the first situation has the same distribution of rate of return on a fixed 
investment in any process over a two-year period that the second situation has over 
a one-year period. We assume that the elements of a and G are such that the 
elements of a* given by (11) are positive, so that all processes are always active, 
and that 1'(GG')->a is greater than one.6 

ASSUMPTION 3: The development of the state variable Yis given by the stochastic 
differential equation 

(13) d Y(t) = [6Y+ C] dt + v->/Y dw(t), 

where 6 and C are constants, with; 0, and v is a 1 x (n + k) vector, each of whose 
components is the constant vo. 

5 Although our assumptions in this section do not satisfy all of the technical growth restrictions 
placed on the utility function and the coefficients of the production function in [6], they do in 
combination lead to a well-posed problem having an optimal solution with many useful properties. 
The optimal consumption function is C*( W, Y, t) = [p/(1 - exp (-p(t' - t))] W and the indirect utility 
function has the form J( W, Y, t) = a(t) log W+ b(t) Y+ c(t), where a(t), b(t), and c(t) are explicitly 
determinable functions of time. 

'The condition l'(GG')-'a > 1, together with (13) and (14), insures that the interest rate will 
always be nonnegative. If 1'(GG')-' a < 1, the interest rate will always be nonpositive. 
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This structure makes it convenient to introduce the notation a c-=a Y, GG'-Q Y, 
and GS' --Y, where the elements of ca, Q, and z are constants. 

With these assumptions about technological change and our earlier assumptions 
about preferences, we can use (3) to write the equilibrium interest rate as 

(14) r( Y) = (V at- 
I 
) 

The interest rate thus follows a diffusion process with 

(15) drift r=~( Q~11 (~Y+ )K( - r), 

/( 1''1 ) 2 2 varr=( I1,11 vv'Y_ o2r 

where K, 0, and o-2 are constants, with KO - 0 and -2 > 0. It is convenient to define 
a new one-dimensional Wiener process, z,(t), such that: 

(16) oN/r dzl(t)- v'Y dw(t); 

this is permissible since each component of w(t) is a Wiener process. The interest 
rate dynamics can then be expressed as: 

(17) dr= K(6-r) dt+ or dz1. 

For K, 0>0, this corresponds to a continuous time first-order autoregressive 
process where the randomly moving interest rate is elastically pulled toward a 
central location or long-term value, 0. The parameter K determines the speed of 
adjustment.7 

An examination of the boundary classification criteria shows that r can reach 
zero if -2> 2K0. If 2K6 0 o, the upward drift is sufficiently large to make the 
origin inaccessible.8 In either case, the singularity of the diffusion coefficient at 
the origin implies that an initially nonnegative interest rate can never subsequently 
become negative. 

The interest rate behavior implied by this structure thus has the following 
empirically relevant properties: (i) Negative interest rates are precluded. (ii) If 
the interest rate reaches zero, it can subsequently become positive. (iii) The 
absolute variance of the interest rate increases when the interest rate itself 
increases. (iv) There is a steady state distribution for the interest rate. 

The probability density of the interest rate at time s, conditional on its value 
at the current time, t, is given by: 

/ 1)\V q/2 
2) 

7The discrete time equivalent of this model was tested by Wood [38], although, being concerned 
only with expectations, he left the error term unspecified. 

8 See Feller [12]. 
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where 

2K 
C- 2 

b r( -K(S-t) 

u cr( t) eK(st) 

v cr(s), 

2KO 

q= 2-1, 
(7 

and Iq() is the modified Bessel function of the first kind of order q. The 
distribution function is the noncentral chi-square, X2[2cr(s);2q+2,2u], with 
2q + 2 degrees of freedom and parameter of noncentrality 2u proportional to the 
current spot rate.9 

Straightforward calculations give the expected value and variance of r(s) as: 

E(r(s)jr(t)) = r(t) e-K(S-t)+ 0(1 -e-K(S-)) 

(19) var (r(s)jr(t)) = r(t)(-')(e K(St) - e -2K(S t)) + 0( )(I -eK ) 

The properties of the distribution of the future interest rates are those expected. 
As K approaches infinity, the mean goes to 0 and the variance to zero, while as 
K approaches zero, the conditional mean goes to the current interest rate and 
the variance to (72r(t) * (s - t). 

If the interest rate does display mean reversion (K, 0 > 0), then as s becomes 
large its distribution will approach a gamma distribution. The steady state density 
function is: 

(20) f]r(oo), oo; r(t), t] = rv- e-cor 

where w = 2K/o-2 and -=-2KG/ 02. The steady state mean and variance are 0 and 
G20/2K, respectively. 
Consider now the problem of valuing a default-free discount bond promising 

to pay one unit at time T'0 The prices of these bonds for all T will completely 
determine the term structure. Under our assumptions, the factor risk premium 
in (12) is 

(21) (at f-I +( 1 Q1 c1n-,1Y -Ay 

9 Processes similar to (17) have been extensively studied by Feller. The Laplace transform of (18) 
is given in Feller [12]. See Johnson and Kotz [17] for a description of the noncentral chi-square 
distribution. Oliver [27] contains properties of the modified Bessel function. 

10 A number of contractual provisions are sufficient to preclude default risk and make the value 
of a bond independent of the wealth of its seller. For example, the terms of the bond could specify 
that the seller must repurchase the bond at the price schedule given by (23) whenever his wealth 
falls to a designated level. 
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By using (15) and (21), we can write the fundamental equation for the price of 
a discount bond, P, most conveniently as 

(22)' o72rPrr+ K( - r)Pr+ P,-ArPrPrP = O, 

with the boundary condition P(r, T, T) = 1. The first three terms in (22) are, from 
Ito's formula, the expected price change for the bond. Thus, the expected rate 
of return on the bond is r+(ArPr/P). The instantaneous return premium on a 
bond is proportional to its interest elasticity. The factor Ar is the covariance of 
changes in the interest rate with percentage changes in optimally invested wealth 
(the "market portfolio"). Since Pr< 0, positive premiums will arise if this covari- 
ance is negative (A <0). 

We may note from (22) that bond prices depend on only one random variable, 
the spot interest rate, which serves as an instrumental variable for the underlying 
technological uncertainty. While the proposition that current (and future) interest 
rates play an important, and to a first approximation, predominant role in 
determining the term structure would meet with general approval, we have seen 
that this will be precisely true only under special conditions." 

By taking the relevant expectation (see Cox, Ingersoll, and Ross [6]), we obtain 
the bond prices as: 

P(r, t, T)=A(t, T) e-B('T)r 

where 

2y e[(K+A++Y)(T-t)]/2 -2K0/oc2 

A(t, T)= A(t, T) 
(y+ K + A )(eY(T-')-1) +2y 

2(e(T-t) _l) 
(23) B(t, T)=( A ) (e T 1) 2 

y ((K + A)2+ 22)1/2 

The bond price is a decreasing convex function of the interest rate and an 
increasing (decreasing) function of time (maturity). The parameters of the interest 
rate process have the following effects. The bond price is a decreasing convex 
function of the mean interest rate level 0 and an increasing concave (decreasing 
convex) function of the speed of adjustment parameter K if the interest rate is 
greater (less) than 0. Both of these results are immediately obvious from their 
effects on expected future interest rates. Bond prices are an increasing concave 
function of the "market" risk parameter A. Intuitively, this is mainly because 
higher values of A indicate a greater covariance of the interest rate with wealth. 
Thus, with large A it is more likely that bond prices will be higher when wealth 
is low and, hence, has greater marginal utility. The bond price is an increasing 

' In our framework, the most important circumstances sufficient for bond prices to depend only 
on the spot interest rate are: (i) individuals have constant relative risk aversion, uncertainty in the 
technology can be described by a single variable, and the interest rate is a monotonic function of 
this variable, or (ii) changes in the technology are nonstochastic and the interest rate is a monotonic 
function of wealth. 

393 
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concave function of the interest rate variance o.2. Here several effects are involved. 
The most important is that a larger (r2 value indicates more uncertainty about 
future real production opportunities, and thus more uncertainty about future 
consumption. In such a world, risk-averse investors would value the guaranteed 
claim in a bond more highly. 

The dynamics of bond prices are given by the stochastic differential equation: 

(24) dP = r[ 1-AB(t, T)]Pdt-B( t, T)Po-r<r dzl. 

For this single state variable model, the returns on bonds are perfectly negatively 
correlated with changes in the interest rate. The returns are less variable when 
the interest rate is low. Indeed, they become certain if a zero interest rate is 
reached, since interest rate changes are then certain. As we would intuitively 
expect, other things remaining equal, the variability of returns decreases as the 
bond approaches maturity. In fact, letting t approach T and denoting T - t as 
At, we find that the expected rate of return is rAt O(At2) and the variance of 
the rate of return is O(At2) rather than O(At), as would be the case for the 
returns on an investment in the production processes over a small interval. It is 
in this sense that the return on very short-term bonds becomes certain. 

Bonds are commonly quoted in terms of yields rather than prices. For the 
discount bonds we are now considering, the yield-to-maturity, R (r, t, T), is defined 
by exp [-(T-t)R(r, t, T)]-P(r, t, T). Thus, we have: 

(25) R (r, t, T) = [rB(t, T)-log A(t, T)]l (T-t). 

As maturity nears, the yield-to-maturity approaches the current interest rate 
independently of any of the parameters. As we consider longer and longer 
maturities, the yield approaches a limit which is independent of the current 
interest rate: 

(26) R(r, t, c)= 2KG 
y+K+A 

When the spot rate is below this long-term yield, th'e term structure is uniformly 
rising. With an interest rate in excess of KO/(K +A), the term structure is falling. 
For intermediate values of the interest rate, the yield curve is humped. 

Other comparative statics for the yield curve are easily obtained from those of 
the bond pricing function. An increase in the current interest rate increases yields 
for all maturities, but the effect is greater for shorter maturities. Similarly, an 
increase in the steady state mean 0 increases all yields, but here the effect is 
greater for longer maturities. The yields to maturity decrease as (J2 or A increases, 
while the effect of a change in K may be of either sign depending on the current 
interest rate. 

There has always been considerable concern with unbiased predictions of 
future interest rates. In the present situation, we could work directly with equation 
(19), which gives expected values of future interest rates in terms of the current 
rate and the parameters K and 0. However, in the rational expectations model 
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we have constructed, all of the information that is currently known about the 
future movement of interest rates is impounded in current bond prices and the 
term structure. If the model is correct, then any single parameter can be determined 
from the term structure and the values of the other parameters. 

This approach is particularly important when the model is extended to allow 
a time-dependent drift term, 0(t). We can then use information contained in the 
term structure to obtain 0(t) and expected future spot rates without having to 
place prior restrictions on its functional form. 

Now, the future expected spot rate given by (19) is altered to: 

rT 
(27) E(r(T)jr(t)) = r(t) e- (T-t)+K 0(s) e-K(T-s) ds. 

The bond pricing formula (30), in turn, is modified to: 

(28) P(r, t, T) = A(t, T) eB(tT)r 

where 

(29) A(t, T)=exp( -K f 0(s)B(s, T) ds), 

which reduces to (23) when 0(s) is constant. 
Assuming, for illustration, that the other process parameters are known, we 

can then use the term structure to determine unbiased forecasts of future interest 
rates. By (28), A(t, T) is an observable function of T, given the term structure 
and the known form of B(t, T), and standard techniques can be invoked to invert 
(29) and obtain an expression for 0(t) in terms of A(t, T) and B(t, T). 
Equation (27) can now be used to obtain predictions of the expected values of 
future spot rates implicit in the current term structure. 

Note that these are not the same values that would be given by the traditional 
expectations assumption that the expected values of future spot rates are contained 
in the term structure in the form of implicit forward rates. In a continuous-time 
model, the forward rate r(T) is given by -PT/P. Then, by differentiating (28): 

(30) r(T)=-PT(r, t, T)/P(r, t, T) 
T 

- rBT(t, T)+K f O(s)BT(s, T) ds. 
t 

Comparing (27) and (30), we see they have the same general form. However, the 
traditional forward rate predictor applies the improper weights BT(S, T) $ 
e- K(T-s) resulting in a biased prediction. 

A number of alternative specifications of time dependence may also be included 
with only minor changes in the model. One particularly tractable example leads 
to an interest rate of r(t)+g(t), where F(t) is given by (17) and g(t) is a function 
which provides a positive lower bound for the interest rate. The essential point 
in all such cases is that in the rational expectations model, the current term 
structure embodies the information required to evaluate the market's probability 



J. C. COX, J. E. INGERSOLL, JR., AND S. A. ROSS 

distribution of the future course of interest rates. Furthermore, the term structure 
can be inverted to find these expectations. 

Other single variable specifications of technological change will in turn imply 
other stochastic properties for the interest rate. It is easy to verify that in our 
model if a and GG' are proportional to some function h(Y, t), then the interest 
rate will also be proportional to h( Y, t). By a suitable choice of h( Y, t), jL( Y, t), 
and S( Y, t), a wide range of a priori properties of interest rate movements can 
be included within the context of a completely consistent model. 

4. VALUING ASSETS WITH GENERAL INTEREST RATE DEPENDENT PAYOFFS 

Our valuation framework can easily be applied to other securities whose payoffs 
depend on interest rates, such as options on bonds and futures on bonds. This 
flexibility enables the model to make predictions about the pricing patterns that 
should prevail simultaneously across several financial markets. Consequently, 
applications to other securities may permit richer and more powerful empirical 
tests than could be done with the bond market alone. 

As an example of valuing other kinds of interest rate securities, consider options 
on bonds. Denote the value at time t of a call option on a discount bond of 
maturity date s, with exercise price K and expiration date T as C(r, t, T; s, K).12 
The option price will follow the basic valuation equation with terminal condition: 

(31) C(r, t, T; s,K) = max[P(r, T, s)-K, O]. 

It is understood that s > T> t, and K is restricted to be less than A(T, s), the 
maximum possible bond price at time T, since otherwise the option would never 
be exercised and would be worthless. By again taking the relevant expectations, 
we arrive at the following formula for the option price: 

(32) C(r, t, T; s, K) 

P(r, t, s)2(2r*[o + B(T s)] 4K0 24 2reY(T-) ) 
or2 ±+ ±+B(T,s) 

-KP(r, t, T)X2(2r*[±t + f]; 4KO 
2 2reY(T-t) 

where 

y- ((K+ A)2 +22)'/2, 

2y 
2( e (T-t) _ 1 )' 

-(K + A + )/o2, 

r* log( 
T, s) /B(T, s), _ KK 

12 Since the underlying security, a discount bond, makes no payments during the life of the option, 
the analysis of Merton [23] implies that premature exercise is never optimal, and, hence, American 
and European calls have the same value. 
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and x2( ) is the previously introduced noncentral chi-square distribution function. 
r* is the critical interest rate below which exercise will occur; i.e., K = P(r*, T, s). 

The call option is an increasing function of maturity (when the expiration date 
on which the underlying bond matures remains fixed). Call options on stocks 
are increasing functions of the interest rate, partly because such an increase 
reduces the present value of the exercise price. However, here an increase in the 
interest rate will also depress the price of the underlying bond. Numerical analysis 
indicates that the latter effect is stronger and that the option value is a decreasing 
convex function of the interest rate. The remaining comparative statics are 
indeterminate. 

5. A COMPARISON WITH BOND PRICING BY ARBITRAGE METHODS 

In this section, we briefly compare our methodology to some alternative ways 
to model bond pricing in continuous time. It is useful to do this now rather than 
later because the model of Section 3 provides an ideal standard for comparison. 

Our approach begins with a detailed description of the underlying economy. 
This allows us to specify the following ingredients of bond pricing: (a) the 
variables on which the bond price depends, (b) the stochastic properties of the 
underlying variables which are endogenously determined, and (c) the exact form 
of the factor risk premiums. In [21], Merton shows that if one begins instead by 
imposing assumptions directly about (a) and (b), then Ito's formula can be used 
to state the excess expected return on a bond in the same form as the left-hand 
side of (4). If the functional form of the right-hand side of (4) were known, then 
one could obtain a bond pricing equation. For example, if one arbitrarily assumed 
that bond prices depend only on the spot interest rate r, that the interest rate 
follows the process given by (17), and that the excess expected return on a bond 
with maturity date T is Y(r, t, T), then one would obtain 

(33) j-r2rPrr+ K(O- r)Pr + Pt-rP = Y(r, t, T). 

If there is some underlying equilibrium which will support the assumptions (a) 
and (b), then there must be some function Y for which bond prices are given 
by (33). However, as Merton notes, this derivation in itself provides no way to 
determine Y or to relate it to the underlying real variables. 

An arbitrage approach to bond pricing was developed in a series of papers by 
Brennan and Schwartz [3], Dothan [10], Garman [14], Richard [28], and Vasicek 
[37]. Arguments similar to those employed in the proof of Theorem 2 of Cox, 
Ingersoll, and Ross [6] are used to show that if there are no arbitrage opportunities, 
Y must have the form 

(34) Y(r, t, T) = aql(r, t)P,(r. t, T), 

where fr is a function depending only on calendar time and not on the maturity 
date of the bond. This places definite restrictions on the form of the excess 
expected return; not all functions Y will satisfy both (33) and (34). 
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There are some potential problems, however, in going one step further and 
using the arbitrage approach to determine a complete and specific model of the 
term structure. The approach itself provides no way of guaranteeing that there 
is some underlying equilibrium for which assumptions (a) and (b) are consistent. 
Setting this problem aside, another difficulty arises from the fact that the arbitrage 
approach does not imply that every choice of , in (34) will lead to bond prices 
which do not admit arbitrage opportunities. Indeed, closing the model by assum- 
ing a specific functional form for ql can lead to internal inconsistencies. 

As an example of the potential problem, consider (33) with Y as shown in 
(34). This gives the valuation equation 

(35) 2(rPrr+2K(r-r)Pr+ Pt-rP = i(r, t)Pr, 

which is identical to (22) apart from a specification of the function if. We could 
now close the model by assuming that qf is linear in the spot rate, qf(r, t) = 1'o+ Ar. 
The solution to (35) is then 

(36) P(r, t, T) =[A(t, T)](K0-o)/K0 exp [-rB(t, T)], 

and the dynamic behavior of the bond price is given by 

(37) dP =[r-(qfo+ Ar)B(t, T)]Pdt -B(t, T)o4rPdz,. 

The linear form assumed for the risk premium seems quite reasonable and 
would appear to be a good choice for empirical work, but it in fact produces a 
model that is not viable. This is most easily seen when r = 0. In this case, the 
bond's return over the next instant is riskless; nevertheless, it is appreciating in 
price at the rate -qpoB(t, T), which is different from the prevailing zero rate of 
interest.13 We thus have a model that guarantees arbitrage opportunities rather 
than precluding them. The difficulty, of course, is that there is no underlying 
equilibrium which would support the assumed premiums. 

The equilibrium approach developed here thus has two important advantages 
over alternative methods of bond pricing in continuous time. First, it automatically 
insures that the model can be completely specified without losing internal con- 
sistency. Second, it provides a way to predict how changes in the underlying real 
economic variables will affect the term structure. 

6. MULTIFACTOR TERM STRUCTURE MODELS AND THE USE OF PRICES AS 

INSTRUMENTAL VARIABLES 

In Section 3, we specialized the general equilibrium framework of Cox, Inger- 
soll, and Ross [6] to develop a complete model of bond pricing. We purposely 
chose a simple specialization in order to illustrate the detailed information that 
such a model can produce. In the model, the prices of bonds of all maturities 
depended on a single random explanatory factor, the spot interest rate. Although 
the resulting term structure could assume several alternative shapes, it is inherent 

13 As stated earlier, the origin is accessible only if o2 > 2KG. Somewhat more complex arguments 
can be used to demonstrate that the model is not viable even if the origin is inaccessible. 
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in a single factor model that price changes in bonds of all maturities are perfectly 
correlated. Such a model also implies that bond prices do not depend on the 
path followed by the spot rate in reaching its current level. For some applications, 
these properties may be too restrictive. However, more general specifications of 
technological opportunities will in turn imply more general bond pricing models. 
The resulting multifactor term structures will have more flexibility than the single 
factor model, but they will inevitably also be more cumbersome and more difficult 
to analyze. 

To illustrate the possibilities, we consider two straightforward generalizations 
of our previous model. Suppose that in our description of technological change 
in (13) and (15), the central tendency parameter 0 is itself allowed to vary 
randomly according to the equation 

(38) do -v(Y- 0) dt, 

where v is a positive constant. That is, we let 0 Y2 and ,t2 == v( Y1 - Y2). The 
value of 0 at any time will thus be an exponentially weighted integral of past 
values of Y. It can then be verified that the interest rate r is again given by (14) 
and that the bond price P will have the form 

(39) P(r, 0, t, T) -exp [-rf(t, T) - Og(t, T)], 

where f and g are explicitly determinable functions of time. In this case, both 
the yields-to-maturity of discount bonds and the expected values of future spot 
rates are linear functions of current and past spot rates.14 

As a second generalization, suppose that the production coefficients a and 
GG' are proportional to the sum of two independent random variables, Y1 and 
Y2, each of which follows an equation of the form (13). Then it can be shown 
that the spot interest rate r will be proportional to the sum of Y, and Y2 and 
that bond prices will again have the exponential form 

(40) P(r, Y2, t, T) =f(t, T) exp [-rg(t, T) - Y2h(t, T)], 

where f, g, and h are other explicitly determinable functions of time. In this 
model, price changes in bonds of all maturities are no longer perfectly correlated. 

Each of these generalizations gives a two factor model of the term structure, 
and the resulting yield curves can assume a wide variety of shapes. Further 
multifactor generalizations can be constructed along the same lines. 

In each of the models considered in this section, one of the explanatory variables 
is not directly observable. Multifactor generalizations will typically inherit this 
drawback to an even greater degree. Consequently, it may be very convenient 
for empirical applications to use some of the endogenously determined prices as 
instrumental variables to eliminate the variables that cannot be directly observed. 
In certain instances, it will be possible to do so. Let us choose the spot rate, r, 

14 Studies which have expressed expected future spot rates as linear combinations of current and 
past spot rates include Bierwag and Grove [2], Cagan [4], De Leeuw [8], Duesenberry [11], Malkiel 
[19], Meiselman [20], Modigliani and Shiller [24], Modigliani and Sutch [25], Van Horne [36], and 
Wood [38]. Cox, Ingersoll, and Ross [5] examine this issue in a diffusion setting. 
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and a vector of long interest rates, 1, as instrumental variables. In general, each 
of these interest rates will be functions of W (unless the common utility function 
is isoelastic) and all the state variables. If it is possible to invert this system 
globally and express the latter as twice differentiable functions of r and 1, then 
r and I can be used as instrumental variables in a manner consistent with the 
general equilibrium framework. 

For the purposes of illustration, suppose that there are two state variables, Y1 
and Y2, and that utility is isoelastic so that the level of wealth is immaterial. 
Then, for instrumental variables r and 1, a scalar, direct but involved calculations 
show that the valuation equation (4) may be rewritten as: 

(41) 2 (var r)Frr+(cov r, I)Frl+ 2 (var l)Fl,+[pr-Ar(r, 1)]Fr 

+ [)l-Aj(r, 1)]F, -rF +Ft + 8= . 

The functions Ar and Al serve the role of the factor risk premiums in (5). They 
are related to the factor risk premiums, 5yX, by: 

Ar(r, 1) = [X1raf qfr2J A, 

(r, 1) =[4244r ]ar A 

where 

(42) Y, -f (r, 1, t), Y2 g( r, 1, t), 

y, ( Y1, Y2, t)- 1 (r, 41, t Y2( Y1, Y2, t)0--2(r, 1, t, 

and 
af ag af ag 
aJr al aJl ar 

Thus far we have not used the fact that I is an interest rate, and the transforma- 
tion of (4) to (41) can be performed for an arbitrary instrumental variable if the 
inversion is possible. The advantage of choosing an interest rate instrument is 
that the second risk factor premium Al and the drift t,u can be eliminated from 
(41) as follows. 

Let Q denote the value of the particular bond for which I is the continuously 
compounded yield-to-maturity. Denote the payment flow from the bond, includ- 
ing both coupons and return of principal, by c(t). In general, this flow will be 
zero most of the time, with impulses representing an infinite flow rate when 
payments are made. Since by definition Q J| c(s) exp [-l(s - t)] ds, we can 
write: 

(43) Q --Ao(1), Q =A 1( 1)9 
Qll = A2(1), Qt = -c(t) + 1Ao(l) = -8 + 1Ao(l), 

Qr = Qrr = Qrl = 0, 
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where 
T 

An- (t - S)nC(S) e (s t) ds, 
t 

and the integral is to be interpreted in the Stieltjes sense. If (43) is substituted 
into (41), we then obtain: 

(r - l)A0(l) - (var 1)A2(1) 
(44) ,u-,r )= 21l 

and the unobservable factor risk premium may be replaced by the observable 
function in (44). If Q is a consol bond with coupons paid continuously at the 
rate c, then A0 = c/l 1, = -c/12 A2= 2c/13, and (44) may be written as:'5 

(45) g -A,k(r, I) =((var 1)+1(1- 

These representations may be a useful starting point for empirical work. 
However, it is important to remember that they cannot be fully justified without 
considering the characteristics of the underlying economy. In the next section, 
we examine some additional multiple state variable models, all of which could 
be reexpressed in this form. 

7. UNCERTAIN INFLATION AND THE PRICING OF NOMINAL BONDS 

The model presented here deals with a real economy in which money would 
serve no purpose. To provide a valid role for money, we would have to introduce 
additional features which would lead far afield of our original intent. However, 
for a world in which changes in the money supply have no real effects, we can 
introduce some aspects of money and inflation in an artificial way by imagining 
that one of the state variables represents a price level and that some contracts 
have payoffs whose real value depends on this price level. That is, they are 
specified in nominal terms. None of this requires any changes in the general theory. 

Suppose that we let the price level, p, be the kth state variable. Since we assume 
that this variable has no effect on the underlying real equilibrium, the functions 
a, ,u, G, S, and J will not depend on p. Of course, this would not preclude 
changes in p from being statistically correlated with changes in real wealth and 
the other state variables. Under these circumstances, the real value of a claim 
whose payoff is specified in nominal terms still satisfies equation (4). All that 
needs to be done is to express the nominal payoff in real terms for the boundary 
conditions. Alternatively, the valuation equation (4) will also still hold if p is a 
differentiable function of W, Y, and t.16 

15See Brennan and Schwartz [3] for this representation. 
16 If one wished to make real money balances an argument in the direct utility function U, it would 

be straightforward to do so in our model. A utility-maximizing money supply policy would depend 
only on the state variables, real wealth, and time, so the induced price level would depend only on 
these variables as well. 



J. C. COX, J. E. INGERSOLL, JR., AND S. A. ROSS 

We can illustrate some of these points in the context of the model of Section 
3. Let us take a second state variable to be the price level, p(= Y2), and consider 
how to value a contract which will at time T pay with certainty an amount 
l/p(T). Call this a nominal unit discount bond, and denote its value at time t 
in real terms as N(r, p, t, T). Suppose that the price level p moves according to 

(46) dp = i(p) dt + o-(p) dwn+2(t) 

and that it is uncorrelated with W and Y1. Assume also that the coefficients in 
(45) are such that E[p-'(s)] exists for all finite s. 

We would then have the valuation equation for N 

(47) oa2rNrr, +22(p)Npp+[KO-(K+ A)r]Nr +i( p)Np +N,t-rN=O 

with terminal condition N(r, p, T, T) = l/p(T). It can be directly verified that 
the solution is 

(48) N(r, p, t, T)= P(r, t, T) E [1/p(T)] 
p(t),t 

where P is the price of a real discount bond given in (23). 
In this formulation, the expected inflation rate changes only with the price 

level. For the commonly assumed case of lognormally distributed prices, however, 
ix(p) = ,pp, Cr(p) = cpp, and 

(49) N(r, p, t, T)= e-(P,-"2)(T-t)P(r, t, T)/p(t), 

so in this case the price of a nominal bond in nominal terms, N=p(t)N, would 
be independent of the current price level. With lognormally distributed prices, 
the expected inflation rate is constant, although of course realized inflation will 
not be. 

As a somewhat more general example, we can separate the expected inflation 
rate factor from the price level factor and identify it with a third state variable. 
Again no change in the general theory is necessary. Label the expected inflation 
rate as y. We propose two alternative models for the behavior of the inflation 
rate: (i) Model 1, 

(50) dy = K,y(0-y) dt+±ly3/2 dz3; 

(ii) Model 2, 

(51) dy = K2(02-y) dt + -2y'/2 dz3 

with the stochastic differential equation governing the movement of the price 
level being in each case 

(52) dp = yp dt + oppy1/2 dz2 

with (cov y, p) - po o-py2p in Model 1, (cov y, p) = po- opyp in Model 2, and o-p < 1. 
Here, as in (17), we have for convenience defined z2(t) and z3(t) as the appropriate 
linear combinations of Wn+2(t) and wn+3(t). 
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Model 1 may well be the better choice empirically, since informal evidence 
suggests that the relative (percentage) variance of the expected inflation rate 
increases as its level increases. Model I has this property, while Model 2 does 
not. However, the solution to Model 2 is more tractable, so we will record both 
for possible empirical use. In both models the expected inflation rate is pulled 
toward a long-run equilibrium level. Both models also allow for correlation 
between changes in the inflation rate and changes in the price level, thus allowing 
for positive or negative extrapolative forces in the movement of the price level. 

The valuation equation for the real value of a nominal bond, specialized for 
our example with Model 1, will then be 

(53) 2 rNrrl+2y3Nyy +ppy2pNvp + 2pop2yNpp + [KO-(K +A)r]N 

+ KIy(OI -y)NY +ypNp + N, - rN - 0 

with N(r, y, p, T, T) = l/p(T). The solution to equation (53) is 

N(r, y, p, t, T) = (- ]m 81 PI 
_ 

)P(r, t, T)lp(t) 

where 

2K101 
Or2(e, l (T)-I) 

(54) 8=[[(K, l+POjp +2 1 +2(1 -poI)o2'12 (K,+POsI 2 1p 1 

2[(1 + 8)2+ KI, 

M( ) is the confluent hypergeometric function, and F(-) is the gamma 
function. 17 

Proceeding in the same way with Model 2, we obtain the valuation equation: 

(55) 202rNrr + 2-2y Nyy + po2copypNyp + I2yp2 Npp + [KO- (K +Ak)r]Nr 

+ K2[02 - y]Ny + ypNp + Nt - rN = 0 

with N(r, y, p, T, T) = I/p(T). The corresponding valuation formula is: 

(56) N(r,y,p,t,T) 

_ e$e[(K +P f)( T-t)]/2 2K 
/a2 

( + K2 + po-2 rp ) ( e ( )1 ) + 2e{ 

x exp ((- ( ) (-)_P+-)P(r, t, T)/p(t), 

+( + 2 +p po-2)pe (et) lT-)+_2j 

where 

[(K2 + pu2op)2 + 2( 12 

17 Slater [34] gives properties of the confluent hypergeometric function. 
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The term structure of interest rates implied by (54) and (56) can assume a wide 
variety of shapes, depending on the relative values of the variables and parameters. 
More complex models incorporating more detailed effects can be built along the 
same lines. 

Throughout our paper, we have used specializations of the fundamental valu- 
ation equation (6). This equation determines the real value of a contingent claim 
as a function of real wealth and the state variables. For some empirical purposes, 
it may be convenient to have a corresponding valuation equation in which all 
values are expressed in nominal terms. 

In our setting, this is given by the following proposition. In this proposition, 
we let nominal wealth be X = pW, the indirect utility function in terms of nominal 
wealth be V(X, Y, t) J(X/p, Y, t)= J(W, Y, t), and the nominal value of a 
claim in terms of nominal wealth be H(X, Y, t) pF(X/p, Y, t) pF(W, Y, t). 
As before, we let p be the kth element of Y. 

PROPOSITION: The nominal value of a contingent claim in terms of nominal 
wealth, H(X, Y, t), satisfies the partial differential equation 

k k k 

(57) l(varX)Hxx + (covX,Y) (cov X, Y)x+ (c Y, Y)Hy, 
i 1 i= 1j =1 

+ (LX -pC*) H + -( (covX, Yi) 

k- Vx (V (cov Yi, Yj) , + H, + p - H=0, 

i= 1 \Vx/ 

where the nominal interest rate, L, is given by 

-VxYvr k 
-Vx. covX,Y 

(58) l = a, - (V )( ) 

and ax is the expected rate of return on nominal wealth, 

(59) ax = a* + covp, X) varP) 
\p )\ pX ( p2 

PROOF: Ito's multiplication rule implies that 

(var W) = (1/p2)(var X) - (2X/p3)(cov X, p) + (X2/p4)(var p), 

(cov W, p) = (1/p)(cov X, p) -(X/p2)(var p), 

(cov W, Y)=(1/p)(covX, Y)-(X/p2)(covp, Y), 

and 

ax = a*'a + (p/p) + (1/pX)(cov X, p)-( /p2)(varp). 
With 

J( W, Y, t)- J(X/p, Y, t)- V(X, Y, t), 
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we have 

(Jww/J) = p(Vxx/ VX), 

(JY/Jw) = ( Vx,/ V), and 

(VXP/ Vx) = -(l/p)- (X/p)(Vxx/ VX). 

Equation (57) follows by writing the derivatives of F(W, Y, t) in terms of those 
of H(X, Y, t) and substituting all of the above into (6). The nominal interest rate 
can then be identified as the nominal payout flow necessary to keep the nominal 
value of a security identically equal to one, which is L as given in (58). 

Q.E.D. 

A comparison of (57) and (58) with (6) and (3) shows that the interest rate 
equation and the fundamental valuation equation have exactly the same form 
when all variables are expressed in nominal terms as when all variables are 
expressed in real terms. By using the arguments given in the proof of the 
proposition, the nominal interest rate can be expressed in terms of real wealth as 

(60) t=r+( I - jW(cov , ) 
P, - Jw / 

- (-J?Y)(coy 
Yp) 

(varp) 

where r, the real interest rate, is as given by equation (3). The term (up/p) is the 
expected rate of inflation. The remaining terms may in general have either sign, 
so the nominal interest rate may be either greater or less than the sum of the real 
interest rate and the expected inflation rate.18 

8. CONCLUDING COMMENTS 

In this paper, we have applied a rational asset pricing model to study the term 
structure of interest rates. In this model, the current prices and stochastic proper- 
ties of all contingent claims, including bonds, are derived endogenously. Anticipa- 
tions, risk aversion, investment alternatives, and preferences about the timing of 
consumption all play a role in determining the term structure. The model thus 
includes the main factors traditionally mentioned in a way which is consistent 
with maximizing behavior and rational expectations. 

By exploring specific examples, we have obtained simple closed form solutions 
for bond prices which depend on observable economic variables and can be 
tested. The combination of equilibrium intertemporal asset pricing principles and 
appropriate modelling of the underlying stochastic processes provides a powerful 
tool for deriing consistent and potentially refutable theories. This is the first 

18 For a related discussion, see Fischer [13]. 
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such exercise along these lines, and the methods developed should have many 
applications beyond those which we considered here. 

In a separate paper, Cox, Ingersoll, and Ross [5], we use our approach to 
examine some aspects of what may be called traditional theories of the term 
structure. There we show that some forms of the classical expectations hypothesis 
are consistent with our simple equilibrium model and more complex ones, while 
other forms in general are not. We also show the relationship between some 
continuous time equilibrium models and traditional theories which express expec- 
ted future spot rates as linear combinations of past spot rates. 
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